• 中国科技论文统计源期刊
  • 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • Scopus数据库全文收录期刊
  • 中国学术期刊综合评价数据库来源期刊
高级检索

超疏水氧化铜薄膜的制备及表征

刘红芹, 徐文国, 王彦斌, 卢士香

刘红芹, 徐文国, 王彦斌, 卢士香. 超疏水氧化铜薄膜的制备及表征[J]. 腐蚀与防护, 2010, 31(2): 107-110.
引用本文: 刘红芹, 徐文国, 王彦斌, 卢士香. 超疏水氧化铜薄膜的制备及表征[J]. 腐蚀与防护, 2010, 31(2): 107-110.
LIU Hong-qin, XU Wen-guo, WANG Yan-bin, LU Shi-xiang. Fabrication and Characterization of Stable Super Hydrophobic Cupric Oxide Films[J]. Corrosion & Protection, 2010, 31(2): 107-110.
Citation: LIU Hong-qin, XU Wen-guo, WANG Yan-bin, LU Shi-xiang. Fabrication and Characterization of Stable Super Hydrophobic Cupric Oxide Films[J]. Corrosion & Protection, 2010, 31(2): 107-110.

超疏水氧化铜薄膜的制备及表征

基金项目: 

高等学校学科创新引智计划项目(B07012)

详细信息
    作者简介:

    刘红芹,博士研究生.

  • 中图分类号: TG178

Fabrication and Characterization of Stable Super Hydrophobic Cupric Oxide Films

  • 摘要: 采用氧化-脱水法在铜表面制备出具有新的阶层结构的CuO薄膜,用全氟辛基三氯甲硅烷(C8H4Cl3F13Si,FOTMS)对其进行表面修饰;利用扫描电子显微镜(SEM)、X射线衍射光谱(XRD)、X射线光电子能谱(XPS)和接触角测量等对超疏水表面的结构、形貌、表面元素组成与润湿等性能进行了表征和分析.结果表明,由CuO纳米管及纳米花组成的独特阶层结构和低表面能的有机结合使得铜表面具有超疏水性,接触角达156.3°,滑动角为2°.
    Abstract: Cupric oxide films with a new hierarchical architecture consisting of nanowires and nanoflowers were fabricated on copper substrate via an oxidation-dehydration process.Stable superhydrophobic CuO surface was obtained by modifing CuO films with perfluorooctyltrichlorosilane.The surface morphology and composition were studied using scanning electron microscopy (SEM),X-ray diffraction (XRD),and X-ray photoelectron spectroscopy (XPS),respectively.The results show that the modified CuO films exhibited the superhydrophobicity with a water contact angle (CA) of about 156.3°,as well as a small sliding angle (SA) of about 2°.The special hierarchical structure,along with the low surface energy leads to high superhydrophobicity of the surface.
  • [1] Zhu Y,Zhang J,Zheng Y,et al.Stable,superhydrophobic,and conductive polyaniline/polystyrene films for corrosive environments[J].Adv Funct Mater,2006,16(4):568-574.
    [2] Wu X,Shi G.Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders[J].J Phys Chem B,2006,110(23):11247-11252.
    [3] Verplanck N,Galopin E,Camart J-C,et al.Reversible electrowetting on superhydrophobic silicon nanowires[J].Nano Lett,2007,7(3):813-817.
    [4] Zhai L,Berg M C,Cebeci F Cü,et al.Patterned superhydrophobic surfaces: Toward a synthetic mimc of the namib desert beetle[J].Nano Lett,2006,6(6):1213-1217.
    [5] Coffinier Y,Janel S,Addad A,et al.Preparation of superhydrophobic silicon oxide nanowire surfaces[J].Langmuir,2007,23(4):1608-1611.
    [6] Bravo J,Zhai L,Wu Z,et al.Transparent superhydrophobic films based on silica nanoparticles[J].Langmuir,2007,23(13):7293-7298.
    [7] Liu T,Chen S,Cheng S,et al.Corrosion behavior of super-hydrophobic surface on copper in seawater[J].Electrochim,Acta,2007,52:8003-8007.
    [8] Guo Z,Liu W.Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure[J].Plant Sci,2007,172(6):1103-1112.
    [9] Guo Z,Zhou F,Hao J,et al.“Stick and slide” ferrofluidic droplets on superhydrophobic surfaces[J].Appl Phys Lett,2006,89(8):081911-3.
    [10] Wang M F,Raghunathan N,Ziaie B.A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces[J].Langmuir,2007,23(5):2300-2303.
    [11] Barthlott W,Neinhuis C.Purity of the sacred lotus,or escape from contamination in biological surfaces[J].Planta,1997,202(1):1-8.
    [12] Ma M,Hill R M,Lowery J L,et al.Electrospun poly (styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity[J].Langmuir,2005,21(12):5549-5554.
    [13] Shi F,Wang Z Q,Zhang X.Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders[J].Adv Mater,2005,17(8):1005-1009.
    [14] Wang Q,Zhang W B,Qu M N,et al.Fabrication of superhydrophobic surfaces onengineering material surfaces with stearic acid[J].Appl Surf Sci,2008,254(7):2009-2012.
    [15] Feng X J,Feng L,Jin M H,et al.Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films[J].J Am Chem Soc,2004,126(1):62-63.
    [16] Liu H,Feng L,Zhai J,et al.Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity[J].Langmuir,2004,20(14):5659-5661.
    [17] Li Y,Duan G,Cai W.Controllable superhydrophobic and lipophobic properties of ordered pore indium oxide array films[J].J Colloid Interface Sci,2007,314(2):615-620.
    [18] Wen X G,Xie Y T,Choi Ch L,et al.Copper-based nanowire materials: Templated syntheses,characterizations,and applications[J].Langmuir,2005,21(10):4729-4737.
    [19] Capece F M,Dicastro V,Furlani C,et al.“Copper chromite” catalysts: XPS structure elucidation and correlation with catalytic activity[J].J Electron Spectrosc Relat Phenom,1982,27(2):119-128.
    [20] Jolley J G,Geesey G G,Haukins M R,et al.Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide[J].Appl Surf Sci,1989,37(4):469-480.
    [21] Nefedov V I,Firsov M N,Shaplygin I S.Electronic structures of MRhO2,MRh2O4,RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data[J].J Electron Spectrosc Relat Phenom,1982,26(1):65-78.
    [22] Hou H,Xie Y,Li Q.Large-scale synthesis of single-crystalline quasi-aligned submicrometer CuO ribbons[J].Cryst Growth Des,2005,5(1):201-205.
    [23] Zhang W X,Wen X G,Yang S H,et al.Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature[J].Adv Mater,2003,15(10):822-825.
    [24] Nishino T,Meguro M,Nakamae K,et al.The lowest surface free energy based on-CF3 alignment[J].Langmuir,1999,15(13):4321-4323.
    [25] Cassie A B D,Baxter S.Wettability of porous surfaces[J].Trans Faraday Soc,1944,40:546-551.
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-24
  • 刊出日期:  2010-02-14

目录

    /

    返回文章
    返回