• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
WANG Xiao-mei. Influences of Ultrafine Grain Boundaries on Corrosion Properties of Metals[J]. Corrosion & Protection, 2015, 36(8): 695-699. DOI: 10.11973/fsyfh-201508001
Citation: WANG Xiao-mei. Influences of Ultrafine Grain Boundaries on Corrosion Properties of Metals[J]. Corrosion & Protection, 2015, 36(8): 695-699. DOI: 10.11973/fsyfh-201508001

Influences of Ultrafine Grain Boundaries on Corrosion Properties of Metals

More Information
  • Received Date: October 01, 2014
  • Grain refinement can effectively strengthen metals. However, accompanied by grain refining, high density of grain boundaries (GBs) will be introduced so as to have effect on the corrosion properties of as-refined materials. In thermodynamic consideration, this review focuses its attention mainly on the influence of ultrafine-grained boundaries on the corrosive behavior. The latest developments of the relationship between corrosion properties and grain sizes as well as grain/twin boundaries (GBs/TBs) are introduced. Further deep study to be in need about the effect of grain size and grain boundaries on the corrosion behavior is pointed out.
  • [1]
    CHEN X H,LU J,LU L,et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J]. Scripta Materialia, 2005(52): 1039-1044.
    [2]
    张洪旺, 刘刚, 黑祖昆, 等. 表面机械研磨诱导AISI304不锈钢表层纳米化[J]. 金属学报, 2003, 39(4): 347-350.
    [3]
    ROLAND T,RETRAINT D,LU K,et al. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability[J]. Materials Science and Engineering A, 2007, 445: 281-288.
    [4]
    吴世丁, 安祥海, 韩卫忠, 等. 等通道转角挤压过程中fcc金属的微观结构演化与力学性能[J]. 金属学报, 2010, 46(3): 257-276.
    [5]
    ZHANG Y, ROBERTO F, SALEH N, et al. Structure and mechanical properties of commercial purity titanium processed by ECAP at room temperature[J]. Materials Science and Engineering A, 2011, 528: 7708-7714.
    [6]
    WEI W, WEI K X, DU Q B. Corrosion and tensile behaviors of ultra-fine grained Al-Mn alloy produced by accumulative roll bonding[J]. Materials Science and Engineering A, 2007, 454: 536-541.
    [7]
    HIROYUKI M, KOHEI H, TAKKURO M, et al. Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing[J]. Corrosion Science, 2008, 50: 1215-1220.
    [8]
    DANAEE E D,GOLOZAR M A,TOROGHINEJAD M R. Corrosion investigation of Al-SiC nano-composite fabricated by accumulative roll bonding (ARB) process[J]. Journal of Alloys and Compounds, 2013, 552: 31-39.
    [9]
    MORDYUK B N,PROKOPENKO G I,VASYLYEV M A,et al. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel[J]. Materials Science and Engineering A, 2007, 458: 253-261.
    [10]
    HAN S L, DOO S K, JINE S J, et al. Influence of peening on the corrosion properties of AISI 304 stainless steel[J]. Corrosion Science, 2009, 51: 2826-2830.
    [11]
    MEHDI E, HABIB D M, KAMAL J. Microstructure and mechanical properties of ultra-fine grains (UFGs) aluminum strips produced by ARB process[J]. Journal of Alloys and Compounds, 2009, 474: 406-415.
    [12]
    RYBALCHENKO O V, DOBATKIN S V, KAPUTKINA L M, et al. Strength of ultrafine-grained corrosion-resistant steels after severe plastic deformation[J]. Materials Science and Engineering A, 2004, 387: 244-248.
    [13]
    ZHAO X C, YANG X R, LIU X Y, et al. The processing of pure titanium through multiple passes of ECAP at room temperature[J]. Materials Science and Engineering A, 2010, 527: 6335-6339.
    [14]
    WANG Y Q, JIANG T T, MENG D W, et al. Fabrication of nanostructured CuO films by electrodeposition andtheir photocatalytic properties[J]. Applied Surface Science, 2014, 317: 414-421.
    [15]
    张津, 杨栋华, 王东亚, 等. 镁合金表面磁控溅射沉积铝膜的力学性能[J]. 北京科技大学学报, 2008, 30(12): 1388-1392.
    [16]
    ZHANG H W,HEI Z K,LIU G,et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J]. Acta Materialia, 2003, 51: 1871-1881.
    [17]
    SERGUEEVA A V, STOLYAROV V V,VALIEV R Z,et al. Advanced mechanical properties of pure Ti with UFG structure[J]. Scripta Materialia, 2001, 45: 747-752.
    [18]
    UENO H,KAKIHATA K,KANEKO Y,et al. Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel[J]. Acta Materialia, 2011, 59: 7060-7069.
    [19]
    CARLOS M G, JOSE E A, EDNA C C, et al. Hardness and structure characterization of Ti6Al4V films produced by reactive magnetron sputtering on a conventional austenitic stainless steel[J]. Microelectronics Journal, 2008, 39: 1329-1330.
    [20]
    ZHENG Z J,GAO Y,GUI Y,et al. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing[J]. Corrosion Science, 2012, 54: 60-67.
    [21]
    BALUSAMY T,SATENDRA K S,SANKARA N. Effect of surface nanocrystallization on the corrosion behavior of AISI 409 stainless steel[J]. Corrosion Science, 2010, 52: 3826-3834.
    [22]
    WEI YE, YING LI, FUHUI WANG. The improvement of the corrosion resistance of 309 stainless steel in the transpassive region by nano-crystallization[J]. Electrochimica Acta, 2009, 54: 1339-1349.
    [23]
    HU C L, XIA S,LI H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corrosion Science, 2011, 53: 1880-1886.
    [24]
    HIROYUKI M, KOHEI H, TAKURO M,et al. Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing[J]. Corrosion Science, 2008, 50: 1215-1220.
    [25]
    PALUMBO G, THORPE S J, AUST K T. On the contribution of triple junctions to the structure and properties of nanocrystalline materials[J]. Scripta Metallurgica Et Materialia, 1990, 24: 1347-1350.
    [26]
    HUANG R, HAN Y. The effect of SMAT-induced grain refinement and dislocations on the corrosion behavior of Ti-25Nb-3Mo-3Zr-2Sn alloy[J]. Materials Science and Engineering C, 2013, 33(4): 2353-2359.
    [27]
    BALYANOV A, KUTNYAKOVA J, AMIRKHANOVA N A, et al. Corrosion resistance of ultra fine-grained Ti[J]. Scripta Materialia, 2004, 5: 225-229.
    [28]
    张义, 孟国哲, 邵亚薇, 等. 高密度纳米孪晶镍镀层的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(2): 99-103.
    [29]
    GUOZHE MENG, YAWEI SHAO, TAO ZHANG,et al. Synthesis and corrosion property of pure Ni with a high density of nanoscale twins[J]. Electrochimica Acta, 2008, 53: 5923-5926.
    [30]
    SONG D, MA A, JIANG J, et al. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution[J]. Corrosion Science, 2010, 52: 481-490.
    [31]
    KIM S H, ERB U, AUST K T. Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum[J]. Scripta Material, 2001, 44: 835-839.
    [32]
    李慧, 夏爽, 周邦新, 等. 690合金中晶界网络分布的控制及其对晶间腐蚀性能的影响[J]. 中国材料进展, 2011, 30(5): 11-14.
    [33]
    RALSTON K D, BIRBILIS N, DAVIES C H J. Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63: 1201-1204.

Catalog

    Article views (4) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return