Citation: | WANG Xiao-mei. Influences of Ultrafine Grain Boundaries on Corrosion Properties of Metals[J]. Corrosion & Protection, 2015, 36(8): 695-699. DOI: 10.11973/fsyfh-201508001 |
[1] |
CHEN X H,LU J,LU L,et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J]. Scripta Materialia, 2005(52): 1039-1044.
|
[2] |
张洪旺, 刘刚, 黑祖昆, 等. 表面机械研磨诱导AISI304不锈钢表层纳米化[J]. 金属学报, 2003, 39(4): 347-350.
|
[3] |
ROLAND T,RETRAINT D,LU K,et al. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability[J]. Materials Science and Engineering A, 2007, 445: 281-288.
|
[4] |
吴世丁, 安祥海, 韩卫忠, 等. 等通道转角挤压过程中fcc金属的微观结构演化与力学性能[J]. 金属学报, 2010, 46(3): 257-276.
|
[5] |
ZHANG Y, ROBERTO F, SALEH N, et al. Structure and mechanical properties of commercial purity titanium processed by ECAP at room temperature[J]. Materials Science and Engineering A, 2011, 528: 7708-7714.
|
[6] |
WEI W, WEI K X, DU Q B. Corrosion and tensile behaviors of ultra-fine grained Al-Mn alloy produced by accumulative roll bonding[J]. Materials Science and Engineering A, 2007, 454: 536-541.
|
[7] |
HIROYUKI M, KOHEI H, TAKKURO M, et al. Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing[J]. Corrosion Science, 2008, 50: 1215-1220.
|
[8] |
DANAEE E D,GOLOZAR M A,TOROGHINEJAD M R. Corrosion investigation of Al-SiC nano-composite fabricated by accumulative roll bonding (ARB) process[J]. Journal of Alloys and Compounds, 2013, 552: 31-39.
|
[9] |
MORDYUK B N,PROKOPENKO G I,VASYLYEV M A,et al. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel[J]. Materials Science and Engineering A, 2007, 458: 253-261.
|
[10] |
HAN S L, DOO S K, JINE S J, et al. Influence of peening on the corrosion properties of AISI 304 stainless steel[J]. Corrosion Science, 2009, 51: 2826-2830.
|
[11] |
MEHDI E, HABIB D M, KAMAL J. Microstructure and mechanical properties of ultra-fine grains (UFGs) aluminum strips produced by ARB process[J]. Journal of Alloys and Compounds, 2009, 474: 406-415.
|
[12] |
RYBALCHENKO O V, DOBATKIN S V, KAPUTKINA L M, et al. Strength of ultrafine-grained corrosion-resistant steels after severe plastic deformation[J]. Materials Science and Engineering A, 2004, 387: 244-248.
|
[13] |
ZHAO X C, YANG X R, LIU X Y, et al. The processing of pure titanium through multiple passes of ECAP at room temperature[J]. Materials Science and Engineering A, 2010, 527: 6335-6339.
|
[14] |
WANG Y Q, JIANG T T, MENG D W, et al. Fabrication of nanostructured CuO films by electrodeposition andtheir photocatalytic properties[J]. Applied Surface Science, 2014, 317: 414-421.
|
[15] |
张津, 杨栋华, 王东亚, 等. 镁合金表面磁控溅射沉积铝膜的力学性能[J]. 北京科技大学学报, 2008, 30(12): 1388-1392.
|
[16] |
ZHANG H W,HEI Z K,LIU G,et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J]. Acta Materialia, 2003, 51: 1871-1881.
|
[17] |
SERGUEEVA A V, STOLYAROV V V,VALIEV R Z,et al. Advanced mechanical properties of pure Ti with UFG structure[J]. Scripta Materialia, 2001, 45: 747-752.
|
[18] |
UENO H,KAKIHATA K,KANEKO Y,et al. Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel[J]. Acta Materialia, 2011, 59: 7060-7069.
|
[19] |
CARLOS M G, JOSE E A, EDNA C C, et al. Hardness and structure characterization of Ti6Al4V films produced by reactive magnetron sputtering on a conventional austenitic stainless steel[J]. Microelectronics Journal, 2008, 39: 1329-1330.
|
[20] |
ZHENG Z J,GAO Y,GUI Y,et al. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing[J]. Corrosion Science, 2012, 54: 60-67.
|
[21] |
BALUSAMY T,SATENDRA K S,SANKARA N. Effect of surface nanocrystallization on the corrosion behavior of AISI 409 stainless steel[J]. Corrosion Science, 2010, 52: 3826-3834.
|
[22] |
WEI YE, YING LI, FUHUI WANG. The improvement of the corrosion resistance of 309 stainless steel in the transpassive region by nano-crystallization[J]. Electrochimica Acta, 2009, 54: 1339-1349.
|
[23] |
HU C L, XIA S,LI H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corrosion Science, 2011, 53: 1880-1886.
|
[24] |
HIROYUKI M, KOHEI H, TAKURO M,et al. Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing[J]. Corrosion Science, 2008, 50: 1215-1220.
|
[25] |
PALUMBO G, THORPE S J, AUST K T. On the contribution of triple junctions to the structure and properties of nanocrystalline materials[J]. Scripta Metallurgica Et Materialia, 1990, 24: 1347-1350.
|
[26] |
HUANG R, HAN Y. The effect of SMAT-induced grain refinement and dislocations on the corrosion behavior of Ti-25Nb-3Mo-3Zr-2Sn alloy[J]. Materials Science and Engineering C, 2013, 33(4): 2353-2359.
|
[27] |
BALYANOV A, KUTNYAKOVA J, AMIRKHANOVA N A, et al. Corrosion resistance of ultra fine-grained Ti[J]. Scripta Materialia, 2004, 5: 225-229.
|
[28] |
张义, 孟国哲, 邵亚薇, 等. 高密度纳米孪晶镍镀层的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(2): 99-103.
|
[29] |
GUOZHE MENG, YAWEI SHAO, TAO ZHANG,et al. Synthesis and corrosion property of pure Ni with a high density of nanoscale twins[J]. Electrochimica Acta, 2008, 53: 5923-5926.
|
[30] |
SONG D, MA A, JIANG J, et al. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution[J]. Corrosion Science, 2010, 52: 481-490.
|
[31] |
KIM S H, ERB U, AUST K T. Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum[J]. Scripta Material, 2001, 44: 835-839.
|
[32] |
李慧, 夏爽, 周邦新, 等. 690合金中晶界网络分布的控制及其对晶间腐蚀性能的影响[J]. 中国材料进展, 2011, 30(5): 11-14.
|
[33] |
RALSTON K D, BIRBILIS N, DAVIES C H J. Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63: 1201-1204.
|