• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
Pang Tian-zhao, ZHENG Wen-jie, WU Yu-qing, WANG Ju-lin. Failure Reason of Sacrificial Anode for Marine Equipment Heat Transfer Tube[J]. Corrosion & Protection, 2016, 37(3): 263-267. DOI: 10.11973/fsyfh-201603017
Citation: Pang Tian-zhao, ZHENG Wen-jie, WU Yu-qing, WANG Ju-lin. Failure Reason of Sacrificial Anode for Marine Equipment Heat Transfer Tube[J]. Corrosion & Protection, 2016, 37(3): 263-267. DOI: 10.11973/fsyfh-201603017

Failure Reason of Sacrificial Anode for Marine Equipment Heat Transfer Tube

More Information
  • Received Date: July 05, 2015
  • Pure zinc sacrificial anodes didn't play a role in a heat transfer tube syetem. The failure reason of sacrificial anodes was analyzed by means of appearance analysis, microstructure study and electrochemical methods. The results showed that there was 1-2 mm non-metalline sediments on the sacrificial anode surface, the main composition of the semdiment was basic zinc chloride which made the surface of sarcrifical anode insulated. It was found that there was a large amount of iron rich precipitates in the microstructure of sacrificial anode, which is not in conformity with the high purity zinc standard. The self-corrosion of the sacrificial anode was detected in a short run, and the surface deposit of the sacrificial anode was rapidly generated. The contents of iron, copper, lead and other harmful elements in the anode were overweighted seriously which led to the formation of harmful second phase, and the self-corrosion was easy to produce in sacrificial anode, resulting in the formation of surface sediments.
  • [1]
    龙萍,李庆芬. 热海水中Zn-Al-Cd阳极腐蚀机理探讨[J]. 腐蚀科学与防护技术,2007,19(4): 235-238.
    [2]
    张明. 电厂海水冷却系统泵体阴极保护数值仿真和优化设计[D]. 湛江: 广东海洋大学,2013.
    [3]
    李延年. 牺牲阳极保护在我厂冷换设备中的应用——Al-Zn-In-Si阳极取代三元锌阳极[J]. 石油化工腐蚀与防护,1991(3):25-33.
    [4]
    梁虎. Al-Zn-In系牺牲阳极极化性能研究及实海试验[D]. 青岛: 中国海洋大学,2013.
    [5]
    万冰华,费敬银,王少鹏,等. 牺牲阳极材料的研究、应用及展望[J]. 材料导报,2010,24(10):87-92.
    [6]
    龙晋明,郭忠诚,樊爱民,等. 牺牲阳极材料及其在金属防腐工程中的应用[J]. 云南冶金,2002,31(3):142-148.
    [7]
    赵聪敏,杜敏,黄志强,等. Al-Zn-In-Si牺牲阳极材料的电化学性能[J]. 腐蚀与防护,2012,33(9):780-783,803.
    [8]
    张有慧,张林,易桂虎,等. 动态海水温度对Al-Zn-In-Mg-Ti牺牲阳极性能的影响[J]. 腐蚀与防护,2013,34(6):471-474.
    [9]
    李威力,闫永贵,陈光,等. Al-Zn-In系牺牲阳极低温电化学性能研究[J]. 腐蚀科学与防护技术,2009,21(2):122-124.
    [10]
    GB/T 17848-1999 牺牲阳极电化学性能测试方法[S].
    [11]
    GB/T 4950-2002 锌-铝-镉合金牺牲阳极及化学分析方法[S].
    [12]
    李欣欣. 几种Zn基二元及三元合金液体结构研究[D]. 济南: 山东大学,2013.
    [13]
    KAEWMANEEKUL T,LOTHONGKUM G. Effect of aluminium on the passivation of zinc-aluminium alloys in artificial seawater at 80 ℃[J]. Corrosion Science,2013,66(1):67-77.
    [14]
    宋曰海,郭忠诚,樊爱民,等. 牺牲阳极材料的研究现状[J]. 腐蚀科学与防护技术,2004,16(1):24-28.
    [15]
    李异,李永广. 在役海底管线牺牲阳极失效分析[J]. 中国腐蚀与防护学报,2002,22(1):61-64.
    [16]
    刘辉,孙明先,马力,等. 杂质元素对铝基牺牲阳极的影响研究进展[J]. 材料导报,2011,25(17):438-441.

Catalog

    Article views (2) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return