• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
ZHANG Hai-bing, MA Li, YAN Yong-gui, CHENG Wen-hua, YUAN Ya-min. Hydrogen Evolution of 17-4PH Stainless Steels[J]. Corrosion & Protection, 2016, 37(4): 317-320. DOI: 10.11973/fsyfh-201604010
Citation: ZHANG Hai-bing, MA Li, YAN Yong-gui, CHENG Wen-hua, YUAN Ya-min. Hydrogen Evolution of 17-4PH Stainless Steels[J]. Corrosion & Protection, 2016, 37(4): 317-320. DOI: 10.11973/fsyfh-201604010

Hydrogen Evolution of 17-4PH Stainless Steels

More Information
  • Received Date: March 31, 2015
  • The hydrogen evolution transforming potential and current density of hydrogen evolution at -1.10 V (vs. SCE, the same below) polarization potential of 17-4PH stainless steels with two distinguishing strength were studied using electrochemical test method. Hydrogen charging test was used to study the hydrogen contents of the alloys after 15 days of hydrogen charging at -1.1 V polarization potential. The slow strain rate tests were used to evaluate the hydrogen embrittlement susceptibility of 17-4PH alloys with or without hydrogen charging. The results show that the hydrogen evolution transformed potentials of both 17-4PH stainless steels in seawater were about -0.90 V. The low strength 17-4PH strainless steel had a hydrogen content of only 2.55×10-4mass%, while the high strength stainless steel had a hydrogen content as high as 6.84×10-4mass%. The strainless steel with high strength showed a significant increase in brittleness after hydrogen charging, while the change in low-strength stainless steel was much smaller. The high strength stainless steel had a hydrogen embrittlement coefficient more than 25%, which means the steel is among the risky range of hydrogen embrittlement; while the low strength stainless steel had a hydrogen embrittlement coefficient about 18%, which means the steel is in riskless range of hydrogen embrittlement.
  • [1]
    TSAY L W, YANG T Y, YOUNG M C. Embrittlement of laser surfaceannealed 17-4PH stainless steel[J]. Materials Science and Engineering A, 2001, 311(1/2): 64-73.
    [2]
    CHIANG W C, PU C C, YU B L, et al. Hydrogen susceptibility of 17-4PH stainless steel[J]. Materials Letters, 2003, 57(16/17): 2485-2488.
    [3]
    任学冲,金莹,王莎莎,等. 贝氏体车轮钢的氢脆敏感性[J]. 腐蚀与防护, 2011, 32(11): 863-867.
    [4]
    ADAMS T M, MICKALONIS J. Hydrogen permeability of multiphase V-Ti-Ni metallic membranes[J]. Materials Letters, 2007, 61(3): 817-820.
    [5]
    TAKANO T, OSHIKAWA K, MATSUDA T, et al. Hydrogen permeation of eutectic Nb-Zr-Ni alloys membranes containing primary phases[J]. Journal of Alloys and Compound, 2004, 45(12): 458-461.
    [6]
    HIROKI I. Hydrogen embrittlement of high strength martensitic stainless steels[J]. Sanyo Technical Report, 2002, 9(1): 50-58.
    [7]
    崔教林, HARDIE D. 三种钢的氢脆敏感性探讨[J]. 腐蚀与防护, 1996, 17(3):114-117.
    [8]
    CAPELLE J, GILGERT J, DMYTRAKH I, et al. Sensitivity of pipelines with steel API X52 to hydrogen embrittlement[J]. International Journal of Hydrogen Energy, 2008, 33(24): 7630-7641.
    [9]
    FUKUYAMA S, IMADE M, YOKOGAWA K. Hydrogen embrittlement of metals for high-pressure hydrogen storage[C]// Proceedings of the 8th Asian Hydrogen Energy Conference. Beijing: [s.n.], 2005.
    [10]
    VKL J, WIPF H. Diffusion of hydrogen in metals[J]. Hyperfine Interactions, 1981, 8(4/6): 631-637.
    [11]
    李会录,余竹焕,李颖,等. 高强钢氢脆敏感性和氢致附加应力的相关性[J]. 腐蚀与防护, 2009, 30(10): 678-683.
    [12]
    唐晓. 热浸镀钢材在海水中的氢渗透行为及其对材料力学性能的影响[D]. 青岛: 中国科学院海洋研究所, 2006.
    [13]
    张林. 海水中极化电位对X70钢氢脆敏感性的影响[J]. 材料科学与工艺, 2011, 5(19): 96-101.
    [14]
    程远, 俞宏英, 王莹, 等. 外加电位对X80钢在南雄土壤模拟溶液中应力腐蚀行为的影响[J]. 腐蚀与防护,2013, 34(1): 13-17.
    [15]
    UYAMA H, MINE Y, MURAKAMI Y. Effects of test frequency on fatigue behaviour in tempered martensitic steel with hydrogen charge[J]. Journal of the Society of Materials Science, 2006, 55(8): 726-731.
    [16]
    郑传波,益帼,高延敏. 高强铝合金应力腐蚀及氢渗透行为研究进展[J]. 腐蚀与防护, 2013, 34(7): 600-604.
    [17]
    OLDEN V, ALVARO A, AKSELSEN O M. Hydrgen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint-experiments and FE simulations[J]. International Journal of Hydrogen Energy, 2012, 37(15): 11474-11486.
    [18]
    OLDEN V, THAULOW C, JOHNSEN R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels[J]. Materials and Design, 2008, 29(10): 1934-1948.
    [19]
    杨兆艳, 闫永贵, 马力, 等. 阴极极化对907钢氢脆敏感性的影响[J]. 腐蚀与防护, 2009, 32(10): 701-703.
    [20]
    DEVNATHAN M, STACHURSKI Z. A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths[J]. Journal of the Electrochemical Society, 1963, 110(8): 886-890.
    [21]
    谭文志, 杜元龙, 傅超, 等. 阴极保护导致ZC-120钢在海水中环境氢脆[J]. 材料保护, 1988, 21(3): 10-13.
    [22]
    褚武杨, 乔利杰, 陈奇志, 等. 断裂与环境断裂[M]. 北京:科学出版社, 2000.

Catalog

    Article views (5) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return