Citation: | BAI Ge, YAN Ying, ZHOU Hao, WU Laiming, LIN Ying, HAO Yu, CAI Lankun. Electrochemical Corrosion Behavior of Bronze Artifact Materials Covered with Patina in Environment Simulation Solutions[J]. Corrosion & Protection, 2019, 40(2): 79-86. DOI: 10.11973/fsyfh-201902001 |
[1] |
CAO X,WANG N,LIU N. Synergistic effect of chloride and NO2 on the atmospheric corrosion of bronze[J]. Materials & Corrosion,2006,57(5):400-406.
|
[2] |
傅丽英,陈中兴,蔡兰坤,等. 溶液pH值与氯离子对青铜腐蚀的影响[J]. 腐蚀与防护,2000,21(7):294-296.
|
[3] |
刘伟,蒋以奎,葛红花. 大气环境中SO2和H2S对铜的电化学腐蚀行为比较[J]. 腐蚀与防护,2015,36(10):934-937.
|
[4] |
林翠,李晓刚. NaCl沉积和SO2污染对镁合金初期大气腐蚀行为的影响[J]. 北京科技大学学报,2004,26(5):524-528.
|
[5] |
王秀通,王丽媛,孙好芬,等. SO2与NaCl对铜大气腐蚀的影响[J]. 材料保护,2011,44(9):28-31.
|
[6] |
任艳艳. 青铜文物腐蚀与保护研究[J]. 中国民族博览,2016(4):50-51.
|
[7] |
CONSTANTINIDES I,ADRIAENS A,ADAMS F. Surface characterization of artificial corrosion layers on copper alloy reference materials[J]. Applied Surface Science,2002,189(1/2):90-101.
|
[8] |
BASTIDAS J M,CHICO B,ALONSO M P,et al. Corrosion of bronze by acetic and formic acid vapours,sulphur dioxide and sodium chloride particles[J]. Materials & Corrosion,1995,46(9):515-519.
|
[9] |
KOSEC T,LEGAT A. Investigation of the corrosion protection of chemically and electrochemically formed patinas on recent bronze[J]. Electrochimica Acta,2011,56(2):722-731.
|
[10] |
林颖,闫莹,吴雪威,等. 带锈青铜文物材料在环境模拟介质中的腐蚀发展行为[J]. 表面技术,2017,46(2):46-51.
|
[11] |
林颖. 带锈青铜文物材料在环境模拟液中的腐蚀发展行为研究[D]. 上海:华东理工大学,2016.
|
[12] |
BASTIDAS J M,LOPEZ-DELGADO A,LOPEZ F A,et al. Characterization of artificially patinated layers on artistic bronze exposed to laboratory SO2 contamination[J]. Journal of Materials Science,1997,32(1):129-133.
|
[13] |
EL-NAGGAR M M. Bis-triazole as a new corrosion inhibitor for copper in sulfate solution. A model for synergistic inhibition action[J]. Journal of Materials Science,2000,35(24):6189-6195.
|
[14] |
MA H,CHEN S,YIN B,et al. Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions[J]. Corrosion Science,2003,45(5):867-882.
|
[15] |
AMIRUDIN A,THIENY D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals[J]. Progress in Organic Coatings,1995,26(1):1-28.
|
[16] |
MARTÍNEZ I,ANDRADE C. Polarization resistance measurements of bars embedded in concrete with different chloride concentrations:EIS and DC comparison[J]. Materials & Corrosion,2015,62(10):932-942.
|
[17] |
NYRKOVA L I,POLYAKOV S H,OSADCHUK S O,et al. Determination of the rate of atmospheric corrosion of metal structures by the method of polarization resistance[J]. Materials Science,2012,47(5):683-688.
|
[18] |
曹楚南. 腐蚀电化学原理[M]. 北京:化学工业出版社,2008:165-165.
|
[19] |
INGELGEM Y V,TOURWÉ E,VEREECKEN J,et al. Application of multisine impedance spectroscopy, Fe-Aes and Fe-Sem to study the early stages of copper corrosion[J]. Electrochimica Acta,2008,53(25):7523-7530.
|
[20] |
MAO Y,NIE D,MOMBELLO D. Chemical and electrochemical characterization of artificial sulphate patina on bronze[J]. Journal of Wuhan University of Technology,2014,29(3):585-589.
|
[21] |
廖晓宁. 铜及青铜合金在静态和动态薄液膜下的腐蚀行为研究[D]. 杭州:浙江大学,2012.
|