• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
LIU Gang, MENG Haiyan. Electroless Nickel Plating Technology and Influencing Factors of Performance of 2090 Aluminum Lithium Alloy[J]. Corrosion & Protection, 2019, 40(2): 110-115,142. DOI: 10.11973/fsyfh-201902006
Citation: LIU Gang, MENG Haiyan. Electroless Nickel Plating Technology and Influencing Factors of Performance of 2090 Aluminum Lithium Alloy[J]. Corrosion & Protection, 2019, 40(2): 110-115,142. DOI: 10.11973/fsyfh-201902006

Electroless Nickel Plating Technology and Influencing Factors of Performance of 2090 Aluminum Lithium Alloy

More Information
  • Received Date: September 01, 2017
  • Electroless nickel plating was carried out on the surface of 2197 Al-Li alloy. The composition and surface morphology of the plating were analyzed by energy dispersive spectrometer (EDS) and scanning electron microscopy (SEM). The plating rate and corrosion resistance of the nickel plating were respectively evaluated by deposition rate and chromogenic time. The optimum additions of three complexing agents (malic acid, glycine, trisodium citrate), rare earth compounds[La (NO3)3, Ce (SO4)2] and heavy metal compound CuSO4 were studied. The results show that a uniform fine nickel plating with cellular structure could be obtained by electroless nickel plating on the surface of 2197 Al-Li alloy. The optimum mixed formulation of complexing agent in electroless nickel plating bath was 3 g/L malic acid, 3 g/L glycine and 30 g/L trisodium citrate. The nickel plating had good corrosion resistance and fast plating rate under the optimum mixed formulation. Adding a small amount of Ce (SO4)2, La (NO3)3 and CuSO4 in the electroless nickel plating bath could improve the plating rate, but reduce the corrosion resistance of the nickel plating. So the addition of Ce (SO4)2 and La (NO3)3 should not exceed 0.5 mg/L, and the addition of CuSO4 should not exceed 2 g/L.
  • [1]
    王浩军,史春玲,贾志强,等. 铝锂合金的发展及研究现状[J]. 材料热处理技术,2012,41(14):82-85.
    [2]
    陈圆圆,郑子樵,蔡彪,等. 2197(A1-Li)-T851合金的疲劳裂纹萌生与扩展行为研究[J]. 稀有金属材料与工程,2011,40(11):1926-1930.
    [3]
    宋贡生. 铝基表面化学镀Ni-P/Ni-Mo-P组合镀层的制备及性能研究[D]. 沈阳:沈阳理工大学,2016.
    [4]
    FETOHO A E,HAMEED R M A,EL-KHATIB K M. Ni-P and Ni-Mo-P modified aluminium alloy 6061 as bipolar plate material for proton exchange membrane fuel cells[J]. Journal of Power Sources,2013,240(31):589-597.
    [5]
    WANG C Y,WEN G W,WU G H. Improving corrosion resistance of aluminium metal matrix composites using cerium sealed electroless Ni-P coatings[J]. Corrosion Engineering Science and Technology,2011,46(4):471-476.
    [6]
    王艳杰,王虎,吴伟,等. 2A12铝合金中温化学镀Ni-P镀层的工艺研究[J]. 北华航天工业学院学报,2015,25(2):33-35.
    [7]
    彭健,杨郭,周宇. 稀土元素对光纤表面化学镀镍的影响[J]. 广州化工,2010,38(11):87-88.
    [8]
    韩滔,罗兵辉,柏振海,等. 5383铝合金表面化学镀镍的热力学分析[J]. 材料导报:B研究篇,2013,27(6):80-85.
    [9]
    李雨,刘定富,杨明悦. 稀土离子对化学镀镍的影响[J]. 电镀与环保,2016,36(2):19-21.
    [10]
    李兴奎. 6063铝合金化学镀镍-磷合金镀层的性能[J]. 电镀与涂饰,2014,33(13):550-552.
    [11]
    曾庆雨,刘定富. 柠檬酸化学镀镍加速剂的研究[J]. 电镀与精饰,2016,38(6):7-10.
    [12]
    沈岳军,刘定富,王俊. 稀土铈对复合化学镀镍-磷-纳米二氧化钛的影响[J]. 电镀与涂饰,2017,36(5):235-238.
    [13]
    汪健健,李思燃,苏勋家,等. 配位剂对30CrMnSi合金钢化学镀镍磷合金的影响[J]. 电镀与涂饰,2016,35(16):834-838.
    [14]
    张道礼,龚树萍,周东祥. 不同络合剂对化学镀镍过程的影响[J]. 材料开发与应用,2000,15(1):5-8.
    [15]
    任志华,田立朋. 稀土元素对酸性化学镀镍的影响[J]. 中国表面工程,2012,25(4):79-83.
    [16]
    施力匀,刘定富,曾庆雨,等. 七种稀土元素对酸性化学镀镍-磷合金镀层的影响[J]. 电镀与精饰,2017,39(5):10-14.
    [17]
    陈一胜,张乐观. 稀土对化学镀镍的影响初探[J]. 南方冶金学院学报,2002,23(2):50-53.
    [18]
    伊廷锋,朱彦荣,周理,等. Ce(SO4)2对化学镀镍液及镀层性能的影响[J]. 稀有金属快报,2008,27(11):27-30.
    [19]
    沈岳军,刘定富,尚晓娟. 硫酸铜对复合化学镀镍-磷-纳米二氧化钛的影响[J]. 电镀与涂饰,2017,36(1):21-24.
    [20]
    梁科,秦文峰,郭荣辉. 镀液中硫酸铜用量对化学镀镍-铜-磷合金聚酯纤维织物微观结构和性能的影响[J]. 电镀与涂饰,2016,35(5):234-237.

Catalog

    Article views (2) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return