Citation: | BAI Qin, BIAN Lu, ZHAO Qing, WANG Baoshun, YANG Chen, XIA Shuang, ZHOU Bangxin. Effect of Grain Boundary Engineering on Intergranular Corrosion Resistance of Incoloy825 Alloy[J]. Corrosion & Protection, 2019, 40(10): 705-709. DOI: 10.11973/fsyfh-201910001 |
[1] |
RANDLE V. The role of the coincidence site lattice in grain boundary engineering[M]. Cambridge, UK:Woodhead Pub Ltd, 1996.
|
[2] |
KOBAYASHI S, TSUREKAWA S, WATANABE T, et al. Grain boundary engineering for control of sulfur segregation-induced embrittlement in ultrafine-grained nickel[J]. Scripta Materialia, 2010, 62(5):294-297.
|
[3] |
AHMEDABADI P, KAIN V, ARORA K, et al. Radiation-induced segregation in austenitic stainless steel type 304:effect of high fraction of twin boundaries[J]. Materials Science and Engineering:A, 2011, 528(25/26):7541-7551.[LinkOut]
|
[4] |
许云洁, 袁媛, 周江, 等. 腐蚀性硫浓度对"晶界工程"优化铜绕组抗油硫腐蚀性能的影响[J]. 腐蚀科学与防护技术, 2018, 30(2):127-134.
|
[5] |
XIA S, LI H, LIU T G, et al. Appling grain boundary engineering to alloy 690 tube for enhancing intergranular corrosion resistance[J]. Journal of Nuclear Materials, 2011, 416(3):303-310.
|
[6] |
HU C L, XIA S, LI H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corrosion Science, 2011, 53(5):1880-1886.
|
[7] |
聂书红, 梁政强. 晶界工程对Incoloy 800H合金在850℃ FLiNaK熔盐中腐蚀行为的影响[J]. 腐蚀与防护, 2018, 39(1):29-34.
|
[8] |
TELANG A, GILL A S, TAMMANA D, et al. Surface grain boundary engineering of alloy 600 for improved resistance to stress corrosion cracking[J]. Materials Science and Engineering:A, 2015, 648:280-288.
|
[9] |
LIU T G, XIA S, SHOJI T, et al. The topology of three-dimensional grain boundary network and its influence on stress corrosion crack propagation characteristics in austenitic stainless steel in a simulated BWR environment[J]. Corrosion Science, 2017, 129:161-168.
|
[10] |
张子龙, 夏爽, 曹伟, 等. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响[J]. 金属学报, 2016, 52(3):313-319.
|
[11] |
WATANABE T. An approach to grain boundary design for strong and ductile polycrystals[J]. Res Mechanica, 1984, 11(1):47-84.
|
[12] |
RANDLE V. Twinning-related grain boundary engineering[J]. Acta Materialia, 2004, 52(14):4067-4081.
|
[13] |
BARR C M, LEFF A C, DEMOTT R W, et al. Unraveling the origin of twin related domains and grain boundary evolution during grain boundary engineering[J]. Acta Materialia, 2018, 144:281-291.
|
[14] |
XIA S, ZHOU B X, CHEN W J. Grain cluster microstructure and grain boundary character distribution in alloy 690[J]. Metallurgical and Materials Transactions A, 2009, 40(12):3016-3030.
|
[15] |
张晓宇, 李德富, 郭胜利, 等. 小变形高温退火对Hastelloy C-276合金晶界特征分布和晶界平面分布的影响[J]. 稀有金属材料与工程, 2016, 45(7):1866-1870.
|
[16] |
赵清, 夏爽, 周邦新, 等. 形变及热处理对825合金管材晶界特征分布的影响[J]. 金属学报, 2015, 51(12):1465-1471.
|
[17] |
PALUMBO G, AUST K T, LEHOCKEY E M, et al. On a more restrictive geometric criterion for "special" CSL grain boundaries[J]. Scripta Materialia, 1998, 38(11):1685-1690.
|
[18] |
Standard practices for detecting susceptibility to intergranular attack in austenitic stainless steels:ASTM A262-2002[S]. West Conshohocken, PA, United States:ASTM International, 2002.
|
[19] |
CAYRON C. Quantification of multiple twinning in face centred cubic materials[J]. Acta Materialia, 2011, 59(1):252-262.
|
[20] |
KAI J J, YU G P, TSAI C H, et al. The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690[J]. Metallurgical Transactions A, 1989, 20(10):2057-2067.
|
[21] |
毕洪运. 晶界工程抑制SUS304不锈钢晶界贫铬机制[J]. 钢铁, 2005, 40(6):68-71.
|