• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
FAN Yi, SU Haozhan, CHEN Kai, ZHANG Lefu, GUO Xianglong. Corrosion Fatigue Crack Growth Behavior of Austenitic Stainless Steels in Seawater Environment[J]. Corrosion & Protection, 2020, 41(7): 67-74. DOI: 10.11973/fsyfh-202007011
Citation: FAN Yi, SU Haozhan, CHEN Kai, ZHANG Lefu, GUO Xianglong. Corrosion Fatigue Crack Growth Behavior of Austenitic Stainless Steels in Seawater Environment[J]. Corrosion & Protection, 2020, 41(7): 67-74. DOI: 10.11973/fsyfh-202007011

Corrosion Fatigue Crack Growth Behavior of Austenitic Stainless Steels in Seawater Environment

More Information
  • Received Date: October 14, 2018
  • The corrosion fatigue crack growth behavior of 304, 316 and 321 stainless steels in air and seawater at room temperature(RT) - 80 ℃ was studied. The results show that the corrosion fatigue crack growth rate of the three stainless steels in seawater environment was significantly higher than that in air, which was due to the accelerating effects of hydrogen-induced cracking and anodic dissolution in the corrosive environment. The acceleration effect of seawater on fatigue behavior of materials was related to the test parameters: the smaller the magnitude of the stress intensity factor and the lower the loading frequency, the more obvious the acceleration effect of corrosion. The crack growth rate was analyzed based on the Paris formula. The results show that the corrosion fatigue crack growth rate of the materials in seawater at room temperature to 80 ℃ agreed well with the Paris formula.
  • [1]
    DELAVAR A N,SHAYEGANI M,PASHA A. An investigation of cracking causes in an outlet RTJ flange in ISOMAX unit[J]. Case Studies in Engineering Failure Analysis,2013,1(2):61-66.
    [2]
    XIE Y,ZHANG J S. Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters:a review[J]. Journal of Nuclear Materials,2015,466:85-93.
    [3]
    YONEZAWA T. Nickel alloys:properties and characteristics[M]//Comprehensive Nuclear Materials.[s.n.],Elsevier,2012:233-266.
    [4]
    黄毓晖. 304不锈钢氯离子腐蚀的力-化学行为研究[D]. 上海:华东理工大学,2011.
    [5]
    刘海定,王东哲,王春光,等. 海水环境中不锈钢腐蚀疲劳裂纹研究进展[J]. 全面腐蚀控制,2017,31(4):60-65.
    [6]
    吴恒,王佳,李超,等. 321不锈钢在淡化海水中的耐腐蚀性能[J]. 腐蚀科学与防护技术,2012,24(3):209-212.
    [7]
    AL-RUBAIE K S,GODEFROID L B,LOPES J A M. Statistical modeling of fatigue crack growth rate in Inconel alloy 600[J]. International Journal of Fatigue,2007,29(5):931-940.
    [8]
    WILLIAMS G V M,KRÄMER S,JUNG C U,et al. Nuclear magnetic resonance study of the electron-doped high-temperature superconducting cuprates[J]. Solid State Nuclear Magnetic Resonance,2004,26(3/4):236-245.
    [9]
    PARIS P,ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering,1963,85(4):528-533.
    [10]
    JANG C,JANG H,HONG J D,et al. Environmental fatigue of metallic materials in nuclear power plants-a review of Korean test programs[J]. Nuclear Engineering and Technology,2013,45(7):929-940.
    [11]
    SEIFERT H P,RITTER S,LEBER H J. Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions[J]. Corrosion Science,2012,55:61-75.
    [12]
    李强,周昌玉,黄文龙,等. 加载频率变化的腐蚀疲劳裂纹扩展速率数学模型[J]. 南京化工大学学报(自然科学版),2000,22(1):32-36.
    [13]
    BACHE M R,EVANS W J. The fatigue crack propagation resistance of Ti-6Al-4V under aqueous saline environments[J]. International Journal of Fatigue,2001,23:319-323.
    [14]
    TIEN J K,RICHARDS R J,BUCK O,et al. Model of dislocation sweep-in of hydrogen during fatigue crack growth[J]. Scripta Metallurgica,1975,9(10):1097-1101.
    [15]
    BARTER S A,MOLENT L,WANHILL R J H. Typical fatigue-initiating discontinuities in metallic aircraft structures[J]. International Journal of Fatigue,2012,41:11-22.
    [16]
    BARSANTI M,BEGHINI M,FRASCONI F,et al. Experimental study of hydrogen embrittlement in Maraging steels[J]. Procedia Structural Integrity,2018,8:501-508.
    [17]
    胡建朋,刘智勇,胡山山,等. 304不锈钢在模拟深海和浅海环境中的应力腐蚀行为[J]. 表面技术,2015,44(3):9-14.
    [18]
    AHN S,JEONG D,KWON Y,et al. Environmental fatigue crack propagation behavior of β-annealed Ti-6Al-4V alloy in NaCl solution under controlled potentials[J]. International Journal of Fatigue,2018,111:186-195.
    [19]
    CHENG A K,CHEN N Z. Corrosion fatigue crack growth modelling for subsea pipeline steels[J]. Ocean Engineering,2017,142:10-19.
    [20]
    石凯凯,蔡力勋,包陈. 预测疲劳裂纹扩展的多种理论模型研究[J]. 机械工程学报,2014,50(18):50-58.
    [21]
    DOWLING N J E,DURET-THUAL C,AUCLAIR G,et al. Effect of complex inclusions on pit initiation in 18% chromium-8% nickel stainless steel types 303,304,and 321[J]. Corrosion,1995,51(5):343-355.
    [22]
    BOX S M,WILSON F G. Effect of carbide morphology and composition on the intergranular corrosion of Ti-stabilized austenitic stainless steels[J]. J Iron Steel Inst,1972,210(9):718-723.
    [23]
    何建宏,唐祥云,陈南平. 铁素体-奥氏体双相不锈钢的氢致开裂研究[J]. 金属学报,1989,25(1):37-41.
    [24]
    MILELLA P P. Corrosion fatigue[M]//Fatigue and Corrosion in Metals. Milano:Springer Milan,2012:767-806.
    [25]
    CARPINTERI A,PAGGI M. Are the Paris' law parameters dependent on each other[J]. Frattura Ed Integrità Strutturale,2008,1(2):10-16.

Catalog

    Article views (12) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return