Citation: | FAN Yi, SU Haozhan, CHEN Kai, ZHANG Lefu, GUO Xianglong. Corrosion Fatigue Crack Growth Behavior of Austenitic Stainless Steels in Seawater Environment[J]. Corrosion & Protection, 2020, 41(7): 67-74. DOI: 10.11973/fsyfh-202007011 |
[1] |
DELAVAR A N,SHAYEGANI M,PASHA A. An investigation of cracking causes in an outlet RTJ flange in ISOMAX unit[J]. Case Studies in Engineering Failure Analysis,2013,1(2):61-66.
|
[2] |
XIE Y,ZHANG J S. Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters:a review[J]. Journal of Nuclear Materials,2015,466:85-93.
|
[3] |
YONEZAWA T. Nickel alloys:properties and characteristics[M]//Comprehensive Nuclear Materials.[s.n.],Elsevier,2012:233-266.
|
[4] |
黄毓晖. 304不锈钢氯离子腐蚀的力-化学行为研究[D]. 上海:华东理工大学,2011.
|
[5] |
刘海定,王东哲,王春光,等. 海水环境中不锈钢腐蚀疲劳裂纹研究进展[J]. 全面腐蚀控制,2017,31(4):60-65.
|
[6] |
吴恒,王佳,李超,等. 321不锈钢在淡化海水中的耐腐蚀性能[J]. 腐蚀科学与防护技术,2012,24(3):209-212.
|
[7] |
AL-RUBAIE K S,GODEFROID L B,LOPES J A M. Statistical modeling of fatigue crack growth rate in Inconel alloy 600[J]. International Journal of Fatigue,2007,29(5):931-940.
|
[8] |
WILLIAMS G V M,KRÄMER S,JUNG C U,et al. Nuclear magnetic resonance study of the electron-doped high-temperature superconducting cuprates[J]. Solid State Nuclear Magnetic Resonance,2004,26(3/4):236-245.
|
[9] |
PARIS P,ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering,1963,85(4):528-533.
|
[10] |
JANG C,JANG H,HONG J D,et al. Environmental fatigue of metallic materials in nuclear power plants-a review of Korean test programs[J]. Nuclear Engineering and Technology,2013,45(7):929-940.
|
[11] |
SEIFERT H P,RITTER S,LEBER H J. Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions[J]. Corrosion Science,2012,55:61-75.
|
[12] |
李强,周昌玉,黄文龙,等. 加载频率变化的腐蚀疲劳裂纹扩展速率数学模型[J]. 南京化工大学学报(自然科学版),2000,22(1):32-36.
|
[13] |
BACHE M R,EVANS W J. The fatigue crack propagation resistance of Ti-6Al-4V under aqueous saline environments[J]. International Journal of Fatigue,2001,23:319-323.
|
[14] |
TIEN J K,RICHARDS R J,BUCK O,et al. Model of dislocation sweep-in of hydrogen during fatigue crack growth[J]. Scripta Metallurgica,1975,9(10):1097-1101.
|
[15] |
BARTER S A,MOLENT L,WANHILL R J H. Typical fatigue-initiating discontinuities in metallic aircraft structures[J]. International Journal of Fatigue,2012,41:11-22.
|
[16] |
BARSANTI M,BEGHINI M,FRASCONI F,et al. Experimental study of hydrogen embrittlement in Maraging steels[J]. Procedia Structural Integrity,2018,8:501-508.
|
[17] |
胡建朋,刘智勇,胡山山,等. 304不锈钢在模拟深海和浅海环境中的应力腐蚀行为[J]. 表面技术,2015,44(3):9-14.
|
[18] |
AHN S,JEONG D,KWON Y,et al. Environmental fatigue crack propagation behavior of β-annealed Ti-6Al-4V alloy in NaCl solution under controlled potentials[J]. International Journal of Fatigue,2018,111:186-195.
|
[19] |
CHENG A K,CHEN N Z. Corrosion fatigue crack growth modelling for subsea pipeline steels[J]. Ocean Engineering,2017,142:10-19.
|
[20] |
石凯凯,蔡力勋,包陈. 预测疲劳裂纹扩展的多种理论模型研究[J]. 机械工程学报,2014,50(18):50-58.
|
[21] |
DOWLING N J E,DURET-THUAL C,AUCLAIR G,et al. Effect of complex inclusions on pit initiation in 18% chromium-8% nickel stainless steel types 303,304,and 321[J]. Corrosion,1995,51(5):343-355.
|
[22] |
BOX S M,WILSON F G. Effect of carbide morphology and composition on the intergranular corrosion of Ti-stabilized austenitic stainless steels[J]. J Iron Steel Inst,1972,210(9):718-723.
|
[23] |
何建宏,唐祥云,陈南平. 铁素体-奥氏体双相不锈钢的氢致开裂研究[J]. 金属学报,1989,25(1):37-41.
|
[24] |
MILELLA P P. Corrosion fatigue[M]//Fatigue and Corrosion in Metals. Milano:Springer Milan,2012:767-806.
|
[25] |
CARPINTERI A,PAGGI M. Are the Paris' law parameters dependent on each other[J]. Frattura Ed Integrità Strutturale,2008,1(2):10-16.
|