Citation: | WANG Wenjie, WANG Weihui, QI Bing. Effect of Surface Machining on the Corrosion Resistance of Oxide Film of Austenite Stainless Steel[J]. Corrosion & Protection, 2020, 41(9): 50-54,59. DOI: 10.11973/fsyfh-202009009 |
[1] |
SUN H,WU X Q,HAN E H,et al. Effects of pH and Dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water[J]. Corrosion Science,2012,59:334-342.
|
[2] |
SUN H,WU X Q,HAN E H. Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution[J]. Corrosion Science,2009,51(12):2840-2847.
|
[3] |
KARLSEN W,DIEGO G,DEVRIENT B. Localized deformation as a key precursor to initiation of intergranular stress corrosion cracking of austenitic stainless steels employed in nuclear power plants[J]. Journal of Nuclear Materials,2010,406(1):138-151.
|
[4] |
LO K H,SHEK C H,LAI J K L. Recent developments in stainless steels[J]. Materials Science and Engineering:R:Reports,2009,65(4/5/6):39-104.
|
[5] |
WU H C,YANG B,WANG Y Q. Effect of sigma phase on the low cycle fatigue property of Z3CN20.09M cast duplex stainless steel in high temperature water[J]. Materials and Corrosion,2015,66(7):663-669.
|
[6] |
岳彩旭,刘献礼. 高强度钢已加工表面完整性的研究进展[J]. 哈尔滨理工大学学报,2011(16):5-10.
|
[7] |
ZHANG W Q,FANG K W,HU Y J,et al. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel[J]. Corrosion Science,2016,108:173-184.
|
[8] |
WANG S Y,HU Y J,FANG K W,et al. Effect of surface machining on the corrosion behaviour of 316 austenitic stainless steel in simulated PWR water[J]. Corrosion Science,2017,126:104-120.
|
[9] |
HAN Y L,MEI J N,PENG Q J,et al. Effect of electropolishing on corrosion of nuclear grade 316L stainless steel in deaerated high temperature water[J]. Corrosion Science,2016,112:625-634.
|
[10] |
HAN Y L,HAN E H,PENG Q J,et al. Effects of electropolishing on corrosion and stress corrosion cracking of alloy 182 in high temperature water[J]. Corrosion Science,2017,121:1-10.
|
[11] |
CISSÉ S,LAFFONT L,TANGUY B,et al. Effect of surface preparation on the corrosion of austenitic stainless steel 304L in high temperature steam and simulated PWR primary water[J]. Corrosion Science,2012,56:209-216.
|
[12] |
郦晓慧,王俭秋,韩恩厚,等. 核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究[J]. 金属学报,2012,48(8):941-950.
|
[13] |
XU J,WU X Q,HAN E H. The evolution of electrochemical behaviour and oxide film properties of 304 stainless steel in high temperature aqueous environment[J]. Electrochimica Acta,2012,71:219-226.
|
[14] |
CHENG X Q,FENG Z C,LI C T,et al. Investigation of oxide film formation on 316L stainless steel in high-temperature aqueous environments[J]. Electrochimica Acta,2011,56(17):5860-5865.
|
[15] |
FÉRON D,HERMS E,TANGUY B. Behavior of stainless steels in pressurized water reactor primary circuits[J]. Journal of Nuclear Materials,2012,427(1/2/3):364-377.
|
[16] |
WAS G S,AMPORNRAT P,GUPTA G,et al. Corrosion and stress corrosion cracking in supercritical water[J]. J NUCL MATER,2007(371):176-201.
|
1. |
刘吉猛,李皓,王书桓,赵定国,倪国龙. 时效处理工艺对海工用高氮不锈钢耐蚀性的影响. 中国冶金. 2023(10): 50-59 .
![]() |