• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
HU Jiayuan, JIANG Zitao, FU Dahong, QIAN Zhouhai. Simulation Assessment for Electromagnetic Interference of 500 kV Submarine Cable to Adjacent Crude Oil Pipeline[J]. Corrosion & Protection, 2021, 42(2): 46-51. DOI: 10.11973/fsyfh-202102009
Citation: HU Jiayuan, JIANG Zitao, FU Dahong, QIAN Zhouhai. Simulation Assessment for Electromagnetic Interference of 500 kV Submarine Cable to Adjacent Crude Oil Pipeline[J]. Corrosion & Protection, 2021, 42(2): 46-51. DOI: 10.11973/fsyfh-202102009

Simulation Assessment for Electromagnetic Interference of 500 kV Submarine Cable to Adjacent Crude Oil Pipeline

More Information
  • Received Date: April 20, 2019
  • A 500 kV submarine cable had a risk of electromagnetic interference to adjacent crude oil pipelines. The CDEGS software was used to simulate and evaluate the interference voltages and current densities of the crude oil pipelines during normal operation of the submarine cable and in single phase short to ground. The results show that when the submarine cable ran normally, the maximum interference voltage was 0.063 1 V and the maximum current density was 9.36 A/m2 for the pipeline, which met the safety requirements of interference voltage less than 4 V (GB/T 50698-2011 standard) and current density less than 30 A/m2 (BS EN 15280:2013 standard). When single phase of the submarine cable was short-circuited due to external factors, the maximum interference voltage of the pipeline was 66.35 V in short time, which was less than the coating breakdown voltage of 3 000 V (NACE SP0177-2007standard) and met the personal safety requirement of interference voltage less than 1 500 V during 0.2 s (DL/T5033:2013 standard). The simulation results show that the construction of the 500 kV submarine cable will not cause significant electromagnetic interference to the adjacent pipelines.
  • [1]
    王裕霜. 国内外海底电缆输电工程综述[J]. 南方电网技术,2012,6(2):26-30.
    [2]
    GUSTAVSEN B,MO O. Variable transmission voltage for loss minimization in long offshore wind farm AC export cables[J]. IEEE Transactions on Power Delivery,2017,32(3):1422-1431.
    [3]
    WAKELIN R G,SHELDON C. Investigation and mitigation of AC corrosion on a 300 mm diameter natural gas pipeline[C]//Corrosion 2004. Houston,TX:NACE International,2004:04205.
    [4]
    WAKELIN R G,GUMMOW R A,SEGALL S M. AC corrosion-case historises, test procedures, & mitigation[C]//Corrosion 1998. Houston,TX:NACE,International:98565.
    [5]
    李炳,邹慧慧,吴凯,等. 某三层PE埋地钢管管体的腐蚀原因[J]. 腐蚀与防护,2016,37(8):688-692.
    [6]
    胡士信. 阴极保护工程手册[M]. 北京:化学工业出版社,1999:213-214.
    [7]
    宋春慧,王力勇,姜子涛,等. 胶日线天然气管道交流干扰评估与缓解[J]. 腐蚀与防护,2013,34(7):641-644.
    [8]
    潘俊文,罗日成,吴东. 500 kV同塔双回输电线路下平行排列油气管道上的感应电压和感应电流仿真分析[J]. 高压电器,2017,53(10):209-214.
    [9]
    李振军. 高压/特高压直流输电系统对埋地钢质管道干扰的现场测试与分析[J]. 腐蚀与防护,2017,38(2):142-146.
    [10]
    郝宏娜,李自力,衣华磊,等. 高压输电线对埋地管道交流腐蚀相关判别的准则[J]. 腐蚀科学与防护技术,2012,24(2):86-90.
    [11]
    BSI. Protection against corrosion by stray current from direct current systems:BS EN 50162[S]. London:BSI,2004.
    [12]
    祝贺,胡艺阳. 高压输电线路对管道稳态电磁干扰的仿真研究[J]. 东北电力大学学报,2017,37(3):83-89.
    [13]
    王晓彤,林集明,陈葛松,等. 广东-海南500 kV海底电缆输电系统电磁暂态研究[J]. 电网技术,2008,32(12):6-11.
    [14]
    白锋,陆家榆,林珊珊,等. 特高压交直流输电线路同走廊正常运行时对邻近埋地油气管道的电磁影响分析[J]. 电网技术,2016,40(11):3609-3614.
    [15]
    赵凯华,陈熙谋. 新概念物理教程-电磁学[M]. 北京:高等教育出版社,2003:407-409.

Catalog

    Article views (7) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return