• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
ZHAO Xuyang, WU Fangfang, HU Lulu, SHENG Yehong, HONG Jing, CAO Fahe. Atmospheric Corrosion Behavior of Carbon Steel and Galvanized Steel in Alternating Electric Field[J]. Corrosion & Protection, 2021, 42(11): 20-27. DOI: 10.11973/fsyfh-202111003
Citation: ZHAO Xuyang, WU Fangfang, HU Lulu, SHENG Yehong, HONG Jing, CAO Fahe. Atmospheric Corrosion Behavior of Carbon Steel and Galvanized Steel in Alternating Electric Field[J]. Corrosion & Protection, 2021, 42(11): 20-27. DOI: 10.11973/fsyfh-202111003

Atmospheric Corrosion Behavior of Carbon Steel and Galvanized Steel in Alternating Electric Field

More Information
  • Received Date: April 12, 2020
  • A self-made device was used to simulate the liquid film formed on the surface of steel in an atmospheric environment. Electrochemical methods were used to study the cathodic reduction process and corrosion evolution information of carbon steel and galvanized steel under liquid film with different thicknesses, and further clarify the influence of alternating current (AC) electric field with different strengths on galvanized steel. The results show that the zinc layer on the surface of carbon steel could effectively protect the steel matrix, and the presence of liquid film and AC electric field would accelerate the corrosion of carbon steel and galvanized steel. The smaller the thickness of the liquid film and the greater the intensity of the AC electric field, the greater the corrosion rate of galvanized steel.
  • [1]
    MA Y T, LI Y, WANG F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corrosion Science, 2009, 51(5):997-1006.
    [2]
    MA Y T, LI Y, WANG F H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment[J]. Corrosion Science, 2010, 52(5):1796-1800.
    [3]
    FUENTES M, DE LA FUENTE D, CHICO B, et al. Atmospheric corrosion of zinc in coastal atmospheres[J]. Materials and Corrosion, 2019, 70(6):1005-1015.
    [4]
    GRAEDEL T E. Corrosion mechanisms for zinc exposed to the atmosphere[J]. Journal of the Electrochemical Society, 1989, 136(4):193C-203C.
    [5]
    李锐海, 廖一帆, 罗凌, 等. 特高压直流瓷绝缘子金具电解腐蚀问题研究[J]. 电瓷避雷器, 2015(1):1-6.
    [6]
    林德源, 戴念维, 陈云翔, 等. 模拟海洋大气条件下直流电场作用对碳钢初期腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2017, 29(1):63-67.
    [7]
    DAI N W, ZHANG J X, CHEN Q M, et al. Effect of the direct current electric field on the initial corrosion of steel in simulated industrial atmospheric environment[J]. Corrosion Science, 2015, 99:295-303.
    [8]
    DAI N W, ZHANG J X, CHEN Q M, et al. Influence of direct current electric field on the formation, composition and microstructure of corrosion products formed on the steel in simulated marine atmospheric environment[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(4):373-381.
    [9]
    原徐杰, 张俊喜, 陈启萌, 等. 电场作用下金属Zn在薄液膜下的电极过程研究[J]. 腐蚀科学与防护技术, 2014, 26(3):197-204.
    [10]
    朱紫晶, 魏莉莎, 陈振宇, 等. 薄层液膜下空间电场对碳酸环己胺缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3):216-220.
    [11]
    HUANG H L, GUO X P, ZHANG G A, et al. Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer[J]. Corrosion Science, 2011, 53(10):3446-3449.
    [12]
    HUANG H L, GUO X P, ZHANG G A, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer[J]. Corrosion Science, 2011, 53(5):1700-1707.
    [13]
    HUANG H L, PAN Z Q, GUO X P, et al. Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer[J]. Corrosion Science, 2013, 75:100-105.
    [14]
    LIAO X N, CAO F H, ZHENG L Y, et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corrosion Science, 2011, 53(10):3289-3298.
    [15]
    陈启萌, 张俊喜, 原徐杰, 等. 外加交流电场对薄液膜中氧扩散的影响[J]. 中国腐蚀与防护学报, 2015, 35(6):549-555.
    [16]
    ORAZEM M E, TRIBOLLET B. Electrochemical impedance spectroscopy[M]. Hoboken, NJ, USA:John Wiley & Sons, Inc., 2017.
    [17]
    ZHENG L Y, CAO F H, LIU W J, et al. Corrosion behavior of pure zinc and its alloy under thin electrolyte layer[J]. Acta Metallurgica Sinica (English Letters), 2010, 23(6):416-430.
    [18]
    SZIRAKI L, SZOCS E, PILBATH Z, et al. Study of the initial stage of white rust formation on zinc single crystal by EIS, STM/AFM and SEM/EDS techniques[J]. Electrochimica Acta, 2001, 46(24/25):3743-3754.
    [19]
    曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京:科学出版社, 2002.
    [20]
    RODRIGUEZ J J S, ÁLVAREZ C M, GONZALEZ J E G. EIS characterisation of the layer of corrosion products on various substrates in differing atmospheric environments[J]. Materials and Corrosion, 2006, 57(4):350-356.
    [21]
    ZHANG X, ZHANG J X, DAI N W, et al. Probing the corrosion mechanism of zinc under direct current electric field[J]. Materials Chemistry and Physics, 2018, 206:232-242.

Catalog

    Article views (8) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return