Citation: | ZHAO Xuyang, WU Fangfang, HU Lulu, SHENG Yehong, HONG Jing, CAO Fahe. Atmospheric Corrosion Behavior of Carbon Steel and Galvanized Steel in Alternating Electric Field[J]. Corrosion & Protection, 2021, 42(11): 20-27. DOI: 10.11973/fsyfh-202111003 |
[1] |
MA Y T, LI Y, WANG F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corrosion Science, 2009, 51(5):997-1006.
|
[2] |
MA Y T, LI Y, WANG F H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment[J]. Corrosion Science, 2010, 52(5):1796-1800.
|
[3] |
FUENTES M, DE LA FUENTE D, CHICO B, et al. Atmospheric corrosion of zinc in coastal atmospheres[J]. Materials and Corrosion, 2019, 70(6):1005-1015.
|
[4] |
GRAEDEL T E. Corrosion mechanisms for zinc exposed to the atmosphere[J]. Journal of the Electrochemical Society, 1989, 136(4):193C-203C.
|
[5] |
李锐海, 廖一帆, 罗凌, 等. 特高压直流瓷绝缘子金具电解腐蚀问题研究[J]. 电瓷避雷器, 2015(1):1-6.
|
[6] |
林德源, 戴念维, 陈云翔, 等. 模拟海洋大气条件下直流电场作用对碳钢初期腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2017, 29(1):63-67.
|
[7] |
DAI N W, ZHANG J X, CHEN Q M, et al. Effect of the direct current electric field on the initial corrosion of steel in simulated industrial atmospheric environment[J]. Corrosion Science, 2015, 99:295-303.
|
[8] |
DAI N W, ZHANG J X, CHEN Q M, et al. Influence of direct current electric field on the formation, composition and microstructure of corrosion products formed on the steel in simulated marine atmospheric environment[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(4):373-381.
|
[9] |
原徐杰, 张俊喜, 陈启萌, 等. 电场作用下金属Zn在薄液膜下的电极过程研究[J]. 腐蚀科学与防护技术, 2014, 26(3):197-204.
|
[10] |
朱紫晶, 魏莉莎, 陈振宇, 等. 薄层液膜下空间电场对碳酸环己胺缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3):216-220.
|
[11] |
HUANG H L, GUO X P, ZHANG G A, et al. Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer[J]. Corrosion Science, 2011, 53(10):3446-3449.
|
[12] |
HUANG H L, GUO X P, ZHANG G A, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer[J]. Corrosion Science, 2011, 53(5):1700-1707.
|
[13] |
HUANG H L, PAN Z Q, GUO X P, et al. Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer[J]. Corrosion Science, 2013, 75:100-105.
|
[14] |
LIAO X N, CAO F H, ZHENG L Y, et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corrosion Science, 2011, 53(10):3289-3298.
|
[15] |
陈启萌, 张俊喜, 原徐杰, 等. 外加交流电场对薄液膜中氧扩散的影响[J]. 中国腐蚀与防护学报, 2015, 35(6):549-555.
|
[16] |
ORAZEM M E, TRIBOLLET B. Electrochemical impedance spectroscopy[M]. Hoboken, NJ, USA:John Wiley & Sons, Inc., 2017.
|
[17] |
ZHENG L Y, CAO F H, LIU W J, et al. Corrosion behavior of pure zinc and its alloy under thin electrolyte layer[J]. Acta Metallurgica Sinica (English Letters), 2010, 23(6):416-430.
|
[18] |
SZIRAKI L, SZOCS E, PILBATH Z, et al. Study of the initial stage of white rust formation on zinc single crystal by EIS, STM/AFM and SEM/EDS techniques[J]. Electrochimica Acta, 2001, 46(24/25):3743-3754.
|
[19] |
曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京:科学出版社, 2002.
|
[20] |
RODRIGUEZ J J S, ÁLVAREZ C M, GONZALEZ J E G. EIS characterisation of the layer of corrosion products on various substrates in differing atmospheric environments[J]. Materials and Corrosion, 2006, 57(4):350-356.
|
[21] |
ZHANG X, ZHANG J X, DAI N W, et al. Probing the corrosion mechanism of zinc under direct current electric field[J]. Materials Chemistry and Physics, 2018, 206:232-242.
|