Citation: | YAN Jia, HUANG Yi, WANG Xiaona. Prediction of Pipeline Corrosion Rate Based on Cross-Validation Gradient Boosting Decision Tree[J]. Corrosion & Protection, 2021, 42(11): 68-74. DOI: 10.11973/fsyfh-202111010 |
[1] |
许宏良, 殷苏民. 基于改进BP神经网络优化的管道腐蚀速率预测模型研究[J]. 表面技术, 2018, 47(2):177-181.
|
[2] |
胡松青, 石鑫, 胡建春, 等. 基于BP神经网络的输油管道内腐蚀速率预测模型[J]. 油气储运, 2010, 29(6):448-450, 398.
|
[3] |
LEE K E, AZIZ I B A, JAAFAR J B. Adaptive multilayered particle swarm optimized neural network (AMPSONN) for pipeline corrosion prediction[J]. International Journal of Advanced Computer Science and Applications, 2017, 8(11):499-508.
|
[4] |
毕傲睿, 骆正山, 乔伟, 等. 基于主成分和粒子群优化支持向量机的管道内腐蚀预测[J]. 表面技术, 2018, 47(9):133-140.
|
[5] |
吴庆伟, 王金龙, 张平. 基于FOA-SVM模型的输油管道内腐蚀速率预测[J]. 腐蚀与防护, 2017, 38(9):732-736.
|
[6] |
LIU J C, WANG H T, YUAN Z G. Forecast model for inner corrosion rate of oil pipeline based on PSO-SVM[J]. International Journal of Simulation and Process Modelling, 2012, 7(1/2):74.
|
[7] |
GONG M J, BAI Y, QIN J, et al. Gradient boosting machine for predicting return temperature of district heating system:a case study for residential buildings in Tianjin[J]. Journal of Building Engineering, 2020, 27:100950.
|
[8] |
WANG J D, LI P, RAN R, et al. A short-term photovoltaic power prediction model based on the gradient boost decision tree[J]. Applied Sciences, 2018, 8(5):689.
|
[9] |
罗光华, 陈江, 柯翔敏. 关于期货商品交易价格预测仿真研究[J]. 计算机仿真, 2018, 35(9):421-426.
|
[10] |
丁聪, 倪少权, 吕红霞. 基于梯度提升的城市轨道交通客流量预测分析[J]. 城市轨道交通研究, 2018, 21(9):60-63.
|
[11] |
龚越, 罗小芹, 王殿海, 等. 基于梯度提升回归树的城市道路行程时间预测[J]. 浙江大学学报(工学版), 2018, 52(3):453-460.
|
[12] |
沈夏炯, 张俊涛, 韩道军. 基于梯度提升回归树的短时交通流预测模型[J]. 计算机科学, 2018, 45(6):222-227, 264.
|
[13] |
BEN TAIEB S, HYNDMAN R J. A gradient boosting approach to the Kaggle load forecasting competition[J]. International Journal of Forecasting, 2014, 30(2):382-394.
|
[14] |
PAPADOPOULOS S, KARAKATSANIS I. Short-term electricity load forecasting using time series and ensemble learning methods[C]//2015 IEEE Power and Energy Conference at Illinois (PECI).Champaign, IL, USA:IEEE, 2015:1-6.
|
[15] |
周志华. 机器学习[M]. 北京:清华大学出版社, 2016.
|
[16] |
李航. 统计学习方法[M]. 北京:清华大学出版社, 2012.
|
[17] |
FRIEDMAN J H. Greedy function approximation:a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5):1189-1232.DOI: 10.1214/aos/1013203451.
|
[18] |
PAN Y, CHEN S, QIAO F, et al. Estimation of real-driving emissions for buses fueled with liquefied natural gas based on gradient boosted regression trees[J]. The Science of the Total Environment, 2019, 660:741-750.
|
[19] |
刘金元, 丁勇, 李涛. 基于梯度提升决策树的航班延误分类预测[J]. 数学的实践与认识, 2018, 48(4):1-7.
|
[20] |
ZHANG Y R, HAGHANI A. A gradient boosting method to improve travel time prediction[J]. Transportation Research Part C:Emerging Technologies, 2015, 58:308-324.
|
[21] |
HASTIE T, TIBSHIRANI R, FRIEDMAN J. The elements of statistical learning:data mining, inference, and prediction[M]. 2ed. New York:Springer, 2009.
|
[22] |
颜波, 张磊, 褚学宁. 基于卷积神经网络的用户感知评估建模[J]. 上海交通大学学报, 2019, 53(7):844-851.
|
[23] |
曹善成, 宋笔锋, 殷之平, 等. 基于支持向量机回归的飞行载荷参数识别研究[J]. 西北工业大学学报, 2013, 31(4):535-539.
|
[24] |
BÜHLMANN P, YU B. Boosting with the L2 loss[J]. Journal of the American Statistical Association, 2003, 98(462):324-339.
|