Citation: | YANG Xin, WU Wei, CHEN Kunlong. Structural Characteristics and Classification of Patina on Ancient Bronzes[J]. Corrosion & Protection, 2023, 44(1): 42-50. DOI: 10.11973/fsyfh-202301008 |
[1] |
ODDY A,SCOTT D A. Copper and bronze in art:corrosion,colorants,conservation[J]. Studies in Conservation,2002,47(4):277.
|
[2] |
ROBBIOLA L,BLENGINO J M,FIAUD C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys[J]. Corrosion Science,1998,40(12):2083-2111.
|
[3] |
OUDBASHI O,HASANPOUR A,DAVAMI P. Investigation on corrosion stratigraphy and morphology in some Iron Age bronze alloys vessels by OM,XRD and SEM-EDS methods[J]. Applied Physics A,2016,122(4):1-11.
|
[4] |
刘薇,李玲,卫扬波,等. 湖北叶家山墓地出土青铜器的锈层结构研究[J]. 江汉考古,2019(4):116-126.
|
[5] |
周浩,祝鸿范,蔡兰坤. 青铜器锈蚀结构组成及形态的比较研究[J]. 文物保护与考古科学,2005,17(3):22-27.
|
[6] |
梁宏刚. 关于金属文物腐蚀成因及其保护修复技术的理论探索[J]. 江汉考古,2021(6):240-245,267.
|
[7] |
LIU W,LI M,WU N,et al. A new application of Fiber optics reflection spectroscopy (FORS):identification of "bronze disease" induced corrosion products on ancient bronzes[J]. Journal of Cultural Heritage,2021,49:19-27.
|
[8] |
INGO G M,DE CARO T,RICCUCCI C,et al. Large scale investigation of chemical composition,structure and corrosion mechanism of bronze archeological artefacts from Mediterranean Basin[J]. Applied Physics A,2006,83(4):513-520.
|
[9] |
INGO G M,ÇILINGIRO LU A,FARALDI F,et al. The bronze shields found at the Ayanis fortress (Van region,Turkey):manufacturing techniques and corrosion phenomena[J]. Applied Physics A,2010,100(3):793-800.
|
[10] |
QUARANTA M. On the degradation mechanisms under the influence of pedological factors through the study of archeological bronze patina[D]. Alma Mater Studiorum UniversitÀ Di Bologna,2009.
|
[11] |
牟笛,崔本信,宋国定,等. 河南南阳夏饷铺墓地鄂国青铜器腐蚀状况分析[J]. 江汉考古,2014(1):102-112,93.
|
[12] |
SCOTT D A. Periodic corrosion phenomena in bronze antiquities[J]. Studies in Conservation,1985,30(2):49-57.
|
[13] |
王鑫光,梁法伟,唐静,等. 荥阳小胡村墓地出土部分铜器的科学分析[J]. 文物保护与考古科学,2018,30(1):78-85.
|
[14] |
MUROS V,SCOTT D A. The occurrence of brochantite on archaeological bronzes:a case study from Lofkënd,Albania[J]. Studies in Conservation,2018,63(2):113-125.
|
[15] |
穆艺,罗武干,李玲,等. 湖北随州叶家山西周墓地出土青铜器锈层结构的综合分析[J]. 文物保护与考古科学,2020,32(3):8-16.
|
[16] |
谭德睿,吴来明,唐静娟,等. 古铜镜"水银沁"表面形成机理的研究[J]. 文物保护与考古科学,1997,9(1):1-9.
|
[17] |
刘薇,陈建立. 古代青铜器表面高锡锈层研究综述[J]. 中国国家博物馆馆刊,2019(5):146-160.
|
[18] |
YOUNG M L,CASADIO F,SCHNEPP S,et al. Non-invasive characterization of manufacturing techniques andcorrosion of ancient Chinese bronzes and a later replica using synchrotron X-ray diffraction[J]. Applied Physics A,2010,100(3):635-646.
|
[19] |
KEAR G,BARKER B D,WALSH F C. Electrochemical corrosion of unalloyed copper in chloride media-a critical review[J]. Corrosion Science,2004,46(1):109-135.
|
[20] |
JMIAI A,EL IBRAHIMI B,TARA A,et al. Chitosan as an eco-friendly inhibitor for copper corrosion in acidic medium:protocol and characterization[J]. Cellulose,2017,24(9):3843-3867.
|
[21] |
SERGHINI-IDRISSI M,BERNARD M C,HARRIF F Z,et al. Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin[J]. Electrochimica Acta,2005,50(24):4699-4709.
|
[22] |
CHAUHAN D S,QURAISHI M A,CARRIōRE C,et al. Electrochemical,ToF-SIMS and computational studies of 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol as a novel corrosion inhibitor for copper in 3.5% NaCl[J]. Journal of Molecular Liquids,2019,289:111113.
|
[23] |
许淳淳,张玉忠. 模拟闭塞电池法研究青铜病的发展过程[J]. 北京化工大学学报(自然科学版),2000,27(4):75-78.
|
[24] |
祝鸿范,周浩,蔡兰坤. 青铜病的闭塞孔穴腐蚀特征的研究[J]. 文物保护与考古科学,2002,14(S1):29-50.
|
[25] |
SHAIK M A,SYED K H,GOLLA B R. Electrochemical behavior of mechanically alloyed hard Cu-Al alloys in marine environment[J]. Corrosion Science,2019,153:249-257.
|
[26] |
GRAYBURN R,DOWSETT M,HAND M,et al. Tracking the progression of bronze disease-A synchrotron X-ray diffraction study of nantokite hydrolysis[J]. Corrosion Science,2015,91:220-223.
|
[27] |
DESLOUIS C,TRIBOLLET B,MENGOLI G,et al. Electrochemical behaviour of copper in neutral aerated chloride solution.II.Impedance investigation[J]. Journal of Applied Electrochemistry,1988,18(3):384-393.
|
[28] |
WANG J L,XU C C,LV G C. Formation processes of CuCl and regenerated Cu crystals on bronze surfaces in neutral and acidic media[J]. Applied Surface Science,2006,252(18):6294-6303.
|
[29] |
张晓梅,原思训,刘煜,等. 周原遗址及渔国墓地出土青铜器锈蚀研究:中国科协首届学术年会,中国浙江杭州,1999.
|
[30] |
金普军,秦颍,胡雅丽,等. 九连墩墓地1、2号墓出土青铜器上锈蚀产物分析[J]. 江汉考古,2009(1):112-119,153.
|
[31] |
XU C C,WANG J L. Investigation of the chemical and electrochemical behaviour of mass transfer at an archaeological bronze/soil interface[J]. Anti-Corrosion Methods and Materials,2003,50(5):326-333.
|
[32] |
郭菲,梅建军,杨军昌,等. 秦陵出土青铜水禽锈体组织结构的初步分析[J]. 文物保护与考古科学,2013,25(4):37-45.
|
[33] |
HE L,LIANG J Y,ZHAO X,et al. Corrosion behavior and morphological features of archeological bronze coins from ancient China[J]. Microchemical Journal,2011,99(2):203-212.
|
[34] |
ALFANTAZI A M,AHMED T M,TROMANS D. Corrosion behavior of copper alloys in chloride media[J]. Materials & Design,2009,30(7):2425-2430.
|
[35] |
李世彩. 安徽省江淮地区出土青铜器的相关研究[D]. 合肥:中国科学技术大学,2017.
|
[36] |
TYLECOTE R F. The effect of soil conditions on the long-term corrosion of buried tin-bronzes and copper[J]. Journal of Archaeological Science,1979,6(4):345-368.
|
[37] |
ROBBIOLA L,HURTEL L. Standard nature of the passive layers of buried archaeological bronze-The example of two roman half-length portraits:METAL 95[C]//International conference on metals conservation. Semur-en-Auxois:[s.n.],1995.
|
[38] |
孙淑云,马肇曾,金莲姬,等. 土壤中腐殖酸对铜镜表面"黑漆古"形成的影响[J]. 文物,1992(12):79-89.
|
[39] |
GETTENS R J. Tin-oxide patina of ancient high-tin bronze[J]. Bulletin of the Fogg Art Museum,1949,11(1):16-26.
|