Citation: | JIA Haiyun, HU Lihua, LI Xiaqiao, QU Zhihao, WANG Zhu, CHANG Wei, ZHANG Lei. Internal Corrosion Risk Prediction of Submarine Pipeline Based on Kernel Principal Component Analysis[J]. Corrosion & Protection, 2023, 44(3): 82-87. DOI: 10.11973/fsyfh-202303012 |
[1] |
曾维烁,江陵. 天然气管道运行中危害因素及管道完整性管理[J]. 中国石油石化,2017(2):21-22.
|
[2] |
李炳文,杨晶. 基于ABC-SVM算法的海底多相流热油管道腐蚀速率预测[J]. 工业加热,2020,49(2):47-49,55.
|
[3] |
徐安桃,李锡栋,周慧,等. 基于灰色补偿BP神经网络优化组合模型的车辆装备冷却系腐蚀预测[J]. 装备环境工程,2018,15(11):123-128.
|
[4] |
陈迪,廖柯熹,何国玺,等. 基于EWM-GRA的腐蚀主控因素分析与腐蚀模型建立[J]. 表面技术,2019,48(6):268-273.
|
[5] |
阎桂荣,董龙雷,宋利强. 一种提高飞行器结构天地力学环境地面试验有效性的方法及其应用[J]. 装备环境工程,2016,13(5):10-16.
|
[6] |
毕傲睿,骆正山,乔伟,等. 基于主成分和粒子群优化支持向量机的管道内腐蚀预测[J]. 表面技术,2018,47(9):133-140.
|
[7] |
宋丛威,张晓明. 基于PCA的解大型超定线性方程组快速算法及应用[J]. 智能计算机与应用,2019,9(4):91-95.
|
[8] |
CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297.
|
[9] |
LIU Z L,GUO A X. Empirical-based support vector machine method for seismic assessment and simulation of reinforced concrete columns using historical cyclic tests[J]. Engineering Structures,2021,237:112141.
|
[10] |
LV Y J,WANG J W,WANG J L,et al. Steel corrosion prediction based on support vector machines[J]. Chaos,Solitons & Fractals,2020,136:109807.
|
[11] |
LEE L H,RAJKUMAR R,LO L H,et al. Oil and gas pipeline failure prediction system using long range ultrasonic transducers and Euclidean-Support Vector Machines classification approach[J]. Expert Systems With Applications,2013,40(6):1925-1934.
|
[12] |
李立刚,万勇,王宇,等. 基于支持向量机和磁记忆技术的管道缺陷深度的定量化反演研究[J]. 腐蚀与防护,2020,41(1):29-34,40.
|
[13] |
WU A,ZHU J H,YANG Y L,et al. Classification of corn kernels grades using image analysis and support vector machine[J]. Advances in Mechanical Engineering,2018,10(12):168781401881764.
|
[14] |
BRERETON R G,LLOYD G R. Support vector machines for classification and regression[J]. The Analyst,2010,135(2):230-267.
|
[15] |
骆正山,宋莹莹,毕傲睿. 基于GRA-RFR的油气集输管道内腐蚀速率预测[J]. 材料保护,2020,53(3):95-100.
|
[16] |
曲志豪,唐德志,胡丽华,等. 基于优化随机森林的H2S腐蚀产物类型及腐蚀速率预测[J]. 表面技术,2020,49(3):42-49.
|
[17] |
支元杰. 大气环境下小样本金属材料腐蚀的数据驱动预测模型[D].北京:北京科技大学,2019.
|
[18] |
鲁庆. 基于数据挖掘的材料自然环境腐蚀预测研究[D].北京:北京科技大学,2015.
|
[19] |
SCORNET E. Random forests and kernel methods[J]. IEEE Transactions on Information Theory,2016,62(3):1485-1500.
|
[20] |
XU W Z,LI C B,CHOUNG J,et al. Corroded pipeline failure analysis using artificial neural network scheme[J]. Advances in Engineering Software,2017,112:255-266.
|
[21] |
SHI J B,WANG J H,MACDONALD D D. Prediction of crack growth rate in Type 304 stainless steel using artificial neural networks and the coupled environment fracture model[J]. Corrosion Science,2014,89:69-80.
|
[22] |
XIA X,NIE J F,DAVIES C H J,et al. An artificial neural network for predicting corrosion rate and hardness of magnesium alloys[J]. Materials & Design,2016,90:1034-1043.
|