Citation: | QIN Yanmin, LI Xingeng, AN Jiangfeng, FAN Zhibin, WU Jun, WANG Xiaoming. Mining Methods for Material Corrosion Data[J]. Corrosion & Protection, 2023, 44(4): 72-81. DOI: 10.11973/fsyfh-202304012 |
[1] |
鲁庆. 基于数据挖掘的材料自然环境腐蚀预测研究[D]. 北京:北京科技大学,2015.
|
[2] |
黄源,张福炎. 数据挖掘及其技术实现[J]. 计算机应用与软件,2001,18(12):1-4.
|
[3] |
陈艳红. 高校信息系统中的数据挖掘与学生行为预警分析研究[D]. 武汉:湖北民族大学,2019.
|
[4] |
U F,GP E,PS A. From data mining to knowledge discovery in databases[J]. AI magazine,1996,17(3):37.
|
[5] |
裴梓博. 碳钢大气环境腐蚀大数据研究及主要影响因素作用规律[D]. 北京:北京科技大学,2021.
|
[6] |
LI X G,ZHANG D W,LIU Z Y,et al. Materials science:share corrosion data[J]. Nature,2015,527(7579):441-442.
|
[7] |
李晓刚. 材料腐蚀信息学:材料腐蚀基因组工程基础与应用[M]. 北京:化学工业出版社,2014:35-37.
|
[8] |
汪川,王振尧,魏伟,等. 腐蚀研究中的统计分析方法和预测模型[J]. 中国腐蚀与防护学报,2010,30(4):306-312.
|
[9] |
REVIE W R. Uhlig's corrosion handbook[M]. [s.l.]:J.Wiley,2011.
|
[10] |
PRIETO M,TANNER P,ANDRADE C. Multiple linear regression model for the assessment of bond strength in corroded and non-corroded steel bars in structural concrete[J]. Materials and Structures,2016,49(11):4749-4763.
|
[11] |
王海杰,齐园园,韩鹏举. NaCl污染土对Q235钢腐蚀的试验研究[J]. 中国科技论文,2013,8(5):397-401.
|
[12] |
廖柯熹,赵建华,夏凤,等. L360钢在H2S/CO2共存体系中的腐蚀行为及腐蚀预测模型[J]. 腐蚀与防护,2020,41(3):16-21.
|
[13] |
张林,徐辉,于永海. 基于最优节点样条逼近的水泵特性曲线拟合方法[J]. 水力发电学报,2008,27(2):141-144.
|
[14] |
武钢钢铁研究所,武汉大学数学系. 铜钢及稀土铜钢大气腐蚀试验统计分析小结[J]. 武钢技术,1975,13(3):58-75.
|
[15] |
曹楚南. 由弱极化曲线拟合估算腐蚀过程的电化学动力学参数[J]. 中国腐蚀与防护学报,1985,5(3):155-164,240.
|
[16] |
易忠胜,王卫民,刘战胜. 腐蚀过程电化学动力学参数的估算[J]. 广西科学,2000,7(4):275-276.
|
[17] |
孙峰,孙伟. 基于粒子群-信赖域的金属极化曲线拟合算法[J]. 计算机应用与软件,2019,36(11):280-285.
|
[18] |
韩庆华,王鑫,芦燕,等. 基于三参数威布尔分布模型的铸钢及对接焊缝腐蚀疲劳寿命评估方法[J]. 建筑结构学报,2021,42(2):213-220,230.
|
[19] |
GAZENBILLER E,ARYA V,REITZ R,et al. Statistical analysis of AA-1050 localized corrosion in anhydrous ethanol[J]. Corrosion Science,2021,179:109137.
|
[20] |
金立兵,梁新亚,王珍,等. 碳钢在海水全浸区腐蚀的研究进展[J]. 腐蚀与防护,2020,41(10):33-38.
|
[21] |
FU C,ZHENG J,ZHAO J,et al. Application of grey relational analysis for corrosion failure of oil tubes[J]. Corrosion science, 2001,43(5):881-889.
|
[22] |
CAO X L,DENG H D,LAN W. Use of the grey relational analysis method to determine the important environmental factors that affect the atmospheric corrosion of Q235 carbon steel[J]. Anti-Corrosion Methods and Materials,2015,62(1):7-12.
|
[23] |
邓志安,李姝仪,李晓坤,等. 基于模糊神经网络的海洋管线腐蚀速率预测新方法[J]. 中国腐蚀与防护学报,2015,35(6):571-576.
|
[24] |
WANG X H,FAN L,DING K K,et al. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment[J]. Journal of Materials Science & Technology,2021,64:187-194.
|
[25] |
MA F Y,WANG WEI HUI. Prediction of pitting corrosion behavior for stainless SUS 630 based on grey system theory[J]. Materials Letters,2007,61(4/5):998-1001.
|
[26] |
杨馥娴. 基于灰色理论和神经网络的管道腐蚀速率模型研究[D].北京:北京化工大学,2020.
|
[27] |
唐其环. 低合金钢大气腐蚀数据拟合及预测——GM(11)模型与回归模型的对比分析[J]. 腐蚀科学与防护技术,1995,7(3):210-213.
|
[28] |
唐其环. 低合金钢大气腐蚀数据的拟合及预测[J]. 腐蚀与防护,1995,16(4):188-191.
|
[29] |
陈建设,史志民,李鑫,等. 灰色GM(1,1)模型在热浸镀层耐海水腐蚀研究领域的应用[J]. 材料与冶金学报,2006,5(3):234-237.
|
[30] |
WANG H W,YU C,WANG S X,et al. Electrochemical corrosion behavior and prediction of corrosion rate for low alloy steel after tempering treatment[J]. International Journal of Electrochemical Science, 2015,10(2):1169-1185.
|
[31] |
ZHANG D B,LI X,ZHANG Y,et al. Prediction method of asphalt pavement performance and corrosion based on grey system theory[J]. International Journal of Corrosion,2019,2019:1-9.
|
[32] |
RUMELHART D E,HINTON G E,WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature,1986,323(6088):533-536.
|
[33] |
SENOUCI A,ELABBASY M,ELWAKIL E,et al. A model for predicting failure of oil pipelines[J]. Structure and Infrastructure Engineering,2014,10(3):375-387.
|
[34] |
倪清钊. 电力金属材料的腐蚀研究与寿命预测[D].上海:上海电力学院,2017.
|
[35] |
凌晓,徐鲁帅,高甲程,等. 基于大数据的金属管道腐蚀状态分析模型与应用[J]. 热加工工艺,2021,50(12):34-38.
|
[36] |
郭稚弧,金名惠,桂修文,等. 神经网络在金属土壤腐蚀研究中的应用[J]. 腐蚀科学与防护技术,1995,7(3):258-262.
|
[37] |
DÍAZ V,LÓPEZ C. Discovering key meteorological variables in atmospheric corrosion through an artificial neural network model[J]. Corrosion Science,2006,49(3):949-962.
|
[38] |
刘静,李晓禄,朱崇伟,等. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报,2016,36(3):205-211.
|
[39] |
LI Q,WANG D X,ZHAO M Y,et al. Modeling the corrosion rate of carbon steel in carbonated mixtures of MDEA-based solutions using artificial neural network[J]. Process Safety and Environmental Protection,2021,147:300-310.
|
[40] |
VAPNIK V,GOLOWICH S,SMOLA A. Support vector method for function approximation, regression estimation, and signal processing[J]. Advance in Neural Information Processing Systems,1997:281-287.
|
[41] |
董绍华,安宇. 基于大数据的管道系统数据分析模型及应用[J]. 油气储运,2015,34(10):1027-1032.
|
[42] |
王大勋,刘洪,陈耀礼,等. 统计学习理论在预测注水管道腐蚀速率中的研究与应用[J]. 石油工程建设,2005,31(4):1-5.
|
[43] |
FU Z D,FU D M,LI X G. Atmospheric corrosion modelling with SVM based feature selection[C]//2009 International Conference on Computational Intelligence and Software Engineering.December 11-13,2009,Wuhan,China.IEEE,2009:1-5.
|
[44] |
周澄,邓菲,刘尧,等. 基于神经网络和支持向量机的导波弯管腐蚀损伤程度辨识研究[J]. 机械工程学报,2021,57(12):136-144.
|
[45] |
徐宾刚,屈梁生,陶肖明. 转子故障贝叶斯诊断网络的研究[J]. 机械工程学报,2004,40(1):66-72.
|
[46] |
胡明,高冀,谭力文. 贝叶斯网络分析在管道腐蚀失效概率计算中的运用[J]. 化工设备与管道,2009,46(5):52-56.
|
[47] |
左哲. 管道腐蚀泄漏火灾的贝叶斯网络推理模型研究[J]. 中国石油大学学报(自然科学版),2015,39(3):149-155.
|
[48] |
GUO Z,CHEN H,YAO G. Bayesian prediction of the stress concentration effect on high-strength wires with corrosion pits[J]. Engineering Failure Analysis, 2022,131:105827.
|
[49] |
薛薇. 数据挖掘中的决策树技术及其应用[J]. 统计与信息论坛,2002,17(2):4-10.
|
[50] |
李秋实. 模拟深海环境下X65管线钢的腐蚀行为与机制研究[D].天津:天津大学,2018.
|
[51] |
梁喜旺,付冬梅,杨焘. 基于流形降维和梯度提升树的大气腐蚀速率预测模型[J]. 装备环境工程,2018,15(6):41-47.
|
[52] |
BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32.
|
[53] |
ZHOU Z H. Ensemble methods:foundations and algorithms[M]. [S.l.]:Chapman and Hall,2012.
|
[54] |
方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J]. 统计与信息论坛,2011,26(3):32-38.
|
[55] |
KORTBEEK R W J,GALLAND M D,MURAS A,et al. Natural variation in wild tomato trichomes;selecting metabolites that contribute to insect resistance using a random forest approach[J]. BMC Plant Biology,2021,21(1):315.
|
[56] |
WANG H,LI Y P. Analyzing variation of soil salinity content in the agricultural areas:a factorial analysis based random forest estimation method[J]. IOP Conference Series:Earth and Environmental Science,2021,793(1):012032.
|
[57] |
PATEL H,VOCK D M,ELISABETA MARAI G,et al. Oropharyngeal cancer patient stratification using random forest based-learning over high-dimensional radiomic features[J]. Scientific Reports,2021,11:14057.
|
[58] |
CHEN Y Y,ZHENG W Z,LI W B,et al. Large group activity security risk assessment and risk early warning based on random forest algorithm[J]. Pattern Recognition Letters,2021,144:1-5.
|
[59] |
MORIZET N,GODIN N,TANG J,et al. Classification of acoustic emission signals using wavelets and Random Forests:application to localized corrosion[J]. Mechanical Systems and Signal Processing,2016,70/71:1026-1037.
|
[60] |
HOU Y,POJTANABUNTOENG T,IANNUZZI M. Use of electrochemical current noise method to monitor carbon steel corrosion under mineral wool insulation[J]. Npj Materials Degradation,2020,4:39.
|
[61] |
YAN L C,DIAO Y P,GAO K W. Analysis of environmental factors affecting the atmospheric corrosion rate of low-alloy steel using random forest-based models[J]. Materials (Basel,Switzerland),2020,13(15):3266.
|
[62] |
颜廷龙,李瑛,王凤芹. 基于MRF模型的飞机飞行动作识别划分算法[J]. 计算机工程与科学,2022,44(1):159-164.
|
[63] |
陈观杰,郑殿峰,冯乃杰,等. 雷州半岛地区大豆农艺性状因子和聚类分析[J]. 浙江农业科学,2022,63(3):485-491,523.
|
[64] |
张雅琳,王虹,程田莉. 基于聚类分析的全源导航算法数据多层次评估[J]. 微波学报,2021,37(S1):220-224.
|
[65] |
朱超慧. 高含硫管道腐蚀因素分析与保护对策[D].南昌:南昌航空大学,2019.
|
[66] |
张腾,张胜,何宇廷,等. 基于航空金属材料腐蚀的我国大气环境分区[J]. 装备环境工程,2020,17(5):1-9.
|
[67] |
周健科,王震,成杰,等. 基于多因素修正的海岛配电网引流线综合失效评估方法[J]. 供用电,2021,38(12):29-36.
|
[68] |
安新正,杨硕,张晓婧,等. 基于模糊理论的高桥墩腐蚀损伤综合评价[J]. 河北工程大学学报(自然科学版),2015,32(2):10-13.
|
[69] |
雷云,余建星,吴朝晖,等. 基于模糊ANP的海底管道失效风险综合评价[J]. 中国安全科学学报,2019,29(5):178-184.
|
[70] |
沈琦,涂哲,李坤,等. 基于集成学习的僵尸网络在线检测方法[J]. 计算机应用研究,2022,39(6):1845-1851.
|
[71] |
刘威,赵选民,邓春龙,等. 灰色神经网络模型在海水腐蚀预测中的应用[J]. 中国腐蚀与防护学报,2008,28(4):201-204.
|
[72] |
黄一凡,王姝勤,刘常义. 灰色-神经网络算法预测地网腐蚀与优化[J]. 环境技术,2018,36(3):25-30.
|
[73] |
凌晓,徐鲁帅,余建平,等. 基于改进的BP神经网络的输油管道内腐蚀速率预测[J]. 传感器与微系统,2021,40(2):124-127.
|
[74] |
贾思奇,郄彦辉,李煜彤,等. 基于遗传-神经网络算法的含均匀腐蚀缺陷油气管线爆破压力预测研究[J]. 中国安全生产科学技术,2020,16(12):105-110.
|
[75] |
王金秋,李为相,朱承飞. 基于粗糙集和BP神经网络的石化管道外腐蚀程度预测应用[J]. 计算机测量与控制,2015,23(1):266-268,272.
|
[76] |
肖斌,张恒宾,刘宏伟. 改进PSO-BPNN算法在管道腐蚀预测中的应用[J]. 郑州大学学报(工学版),2022,43(1):27-33.
|
[77] |
骆正山,郜阳. 基于灰色支持向量机的湿天然气集输管道腐蚀研究[J]. 中国安全科学学报,2013,23(5):62-67.
|
[78] |
李响,余建星,苗春生,等. 基于遗传算法SVM的海洋环境腐蚀速率预测[J]. 中国海洋平台,2018,33(5):56-62.
|
[79] |
SONG X X,WANG K Y,ZHOU L,et al. Multi-factor mining and corrosion rate prediction model construction of carbon steel under dynamic atmospheric corrosion environment[J]. Engineering Failure Analysis,2022,134:105987.
|
[80] |
LV Y J,WANG J W,WANG J L,et al. Steel corrosion prediction based on support vector machines[J]. Chaos,Solitons & Fractals,2020,136:109807.
|
[81] |
ZHI Y J,YANG T,FU D M. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels[J]. Journal of Materials Science & Technology,2020,49:202-210.
|