• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
ZHANG Dongjiu, CHENG Congqian, YANG Hua, WANG Honglun, XU Laping, LI Youyou, CAO Tieshan, ZHAO Jie. Effect of Passivation Film Integrity on Marine Atmospheric Corrosion of Stainless Steel and Its Quality Inspection Methods[J]. Corrosion & Protection, 2023, 44(5): 46-50,56. DOI: 10.11973/fsyfh-202305009
Citation: ZHANG Dongjiu, CHENG Congqian, YANG Hua, WANG Honglun, XU Laping, LI Youyou, CAO Tieshan, ZHAO Jie. Effect of Passivation Film Integrity on Marine Atmospheric Corrosion of Stainless Steel and Its Quality Inspection Methods[J]. Corrosion & Protection, 2023, 44(5): 46-50,56. DOI: 10.11973/fsyfh-202305009

Effect of Passivation Film Integrity on Marine Atmospheric Corrosion of Stainless Steel and Its Quality Inspection Methods

More Information
  • Received Date: August 02, 2021
  • The effects of typical processing technology on the integrity of passivation film on surface of stainless steel and their corrosion behavior in marine atmosphere environment are introduced from the aspects of surface roughness, deformation and scratches, heterogeneous pollution and thermal processing. The integrity quality inspection methods for stainless steel passivation film in domestic and foreign standards are compared especially the quality inspection methods suitable for engineering site. Finally, the research directions of passivation film on stainless steel surface are prospected.
  • [1]
    SHAHRYARI A, KAMAL W, OMANOVIC S. The effect of surface roughness on the efficiency of the cyclic potentiodynamic passivation (CPP) method in the improvement of general and pitting corrosion resistance of 316LVM stainless steel[J]. Materials Letters, 2008, 62(23):3906-3909.
    [2]
    王梅丰, 魏红阳, 陈东初, 等. 表面粗糙度对硝酸钝化304不锈钢点蚀行为影响[J]. 腐蚀与防护, 2015, 36(12):1156-1160, 1165.
    [3]
    LATIFI A, IMANI M, KHORASANI M T, et al. Electrochemical and chemical methods for improving surface characteristics of 316L stainless steel for biomedical applications[J]. Surface and Coatings Technology, 2013, 221:1-12.
    [4]
    HONG T, NAGUMO M. Effect of surface roughness on early stages of pitting corrosion of Type 301 stainless steel[J]. Corrosion Science, 1997, 39(9):1665-1672.
    [5]
    汪轩义, 吴荫顺, 张琳, 等. 不锈钢钝化膜表面形貌的表征[J]. 金属功能材料, 1999, 6(5):221-224.
    [6]
    黄俊初. 不锈钢压力容器制造中如何进行防护及表面处理[J]. 中国高新技术企业, 2012(12):113-114.
    [7]
    徐红, 高雪, 朱建新, 等. 表面质量对不锈钢弹簧耐锈蚀性能的影响[J]. 金属制品, 2020, 46(4):38-41, 62.
    [8]
    HOU Y, ZHAO J, CHENG C Q, et al. The metastable pitting corrosion of 2205 duplex stainless steel under bending deformation[J]. Journal of Alloys and Compounds, 2020, 830:154422.
    [9]
    LUO H, WANG X Z, DONG C F, et al. Effect of cold deformation on the corrosion behaviour of UNS S31803 duplex stainless steel in simulated concrete pore solution[J]. Corrosion Science, 2017, 124:178-192.
    [10]
    侯艳, 程从前, 赵杰, 等. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6):1022-1026.
    [11]
    王军, 靳彤, 马一鸣, 等. 高残余应力下2507双相不锈钢应力腐蚀开裂行为[J]. 压力容器, 2020, 37(3):50-55, 78.
    [12]
    吴斌, 孟凡江, 和广庆, 等. 核用传热管表面划伤致应力腐蚀失效问题及研究进展[J]. 腐蚀与防护, 2020, 41(9):1-9, 15.
    [13]
    ZHU L K, YAN Y, QIAO L J, et al. Stainless steel pitting and early-stage stress corrosion cracking under ultra-low elastic load[J]. Corrosion Science, 2013, 77:360-368.
    [14]
    陈君, 李全安, 张清, 等. AISI316不锈钢腐蚀磨损交互作用的研究[J]. 中国腐蚀与防护学报, 2014, 34(5):433-438.
    [15]
    RCCM. Design and Construction Rules for Mechanical Components of PWR Nuclear Islands. Sec.I. Subsec.Z. Annex ZG Fast Fracture Resistance[S]. Paris:AFCEN, 1993.
    [16]
    PARKS B W, GRUBB J F, FRITZ J D, et al. The influence of iron contamination on the corrosion resistance of several stainless steels[C]//Corrosion 2000, Houston, TX:NACE International, 2000:00475.
    [17]
    KHATAK H S, BHARASI N S, GNANAMOORTHY J B. Iron contamination causes stress corrosion cracking in stainless steels[J]. Materials Performance, 1994, 33:56-57.
    [18]
    刘思航. 机械打磨不锈钢表面完整性及耐蚀性研究[D]. 大连:大连交通大学, 2016:35-48.
    [19]
    宋冠宇, 赵杰, 程从前, 等. 核电用奥氏体不锈钢表面铁素体污染的影响及对策[J]. 腐蚀与防护, 2011, 32(10):813-816.
    [20]
    赵艳, 程从前, 曹志远, 等. 304不锈钢与Sn作用后腐蚀性能评价[J]. 材料工程, 2014, 42(3):41-45.
    [21]
    CHENG C Q, CAO T S, SONG G Y, et al. Use of colour change indicators to quantify iron contamination on stainless steel[J]. Corrosion Engineering, Science and Technology, 2015, 50(5):346-354.
    [22]
    ZHANG Y B, LUO H Y, ZHONG Q P, et al. Characterization of passive films formed on As-received and sensitized AISI 304 stainless steel[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1):1-12.
    [23]
    HOU Y. Effects of sensitization on the metastable pitting corrosion of 304 stainless steel[J]. International Journal of Electrochemical Science, 2018:7095-7110.
    [24]
    赵莉萍, 袁雪, 李钊, 等. 热处理对低镍铬锰氮奥氏体不锈钢晶间腐蚀的影响[J]. 金属热处理, 2015, 40(7):37-41.
    [25]
    LV J L, LIANG T X, WANG C, et al. Influence of sensitization on passive films in AISI 2205 duplex stainless steel[J]. Journal of Alloys and Compounds, 2016, 658:657-662.
    [26]
    RAHIMI E, RAFSANJANI-ABBASI A, DAVOODI A, et al. Characterization of the native passive film on ferrite and austenite phases of sensitized 2205 duplex stainless steel[J]. Journal of the Electrochemical Society, 2019, 166(16):C609-C616.
    [27]
    TURNER S, ROBINSON F P A. The effect of the surface oxides produced during welding on the corrosion resistance of stainless steels[J]. Corrosion, 1989, 45(9):710-716.
    [28]
    凌礼恭. 焊接氧化与打磨工艺对核电304L高温水氧化的影响[D]. 北京:北京科技大学, 2020:33-38.
    [29]
    LING L G, GUO P L, SHANG C G, et al. Effects of oxides produced during welding on oxidation behavior of the 304L welded joint in simulated primary circuit solution of PWR[J]. Corrosion Science, 2020, 167:108515.
    [30]
    王振尧, 于国才, 韩薇. 我国自然环境大气腐蚀性调查[J]. 腐蚀与防护, 2003, 24(8):323-326, 344.
    [31]
    骆鸿, 李晓刚, 肖葵, 等. 304不锈钢在西沙海洋大气环境中的腐蚀行为[J]. 北京科技大学学报, 2013, 35(3):332-338.
    [32]
    KAIN R M, PHUL B S, PIKUL S J. 1940'til now-long-term marine atmospheric corrosion resistance of stainless steel and other nickel containing alloys[C]//Outdoor Atmospheric Corrosion.West Conshohocken:ASTM International, 2009:343-343-15.
    [33]
    陈俊航, 白子恒, 薛伟, 等. 304不锈钢在青岛污染海洋大气环境中的腐蚀寿命预测模型[J]. 材料保护, 2019, 52(12):48-55, 68.
    [34]
    曹岩, 霍阳, 吕钢, 等. 不锈钢在红沿河大气环境下初期腐蚀行为[J]. 全面腐蚀控制, 2015, 29(11):64-66, 84.
    [35]
    刘亚鹏, 张慧霞, 王洪伦, 等. 2507双相不锈钢南海大气腐蚀行为研究[J]. 西北工业大学学报, 2019, 37(S1):106-113.
    [36]
    WALLINDER D, WALLINDER I O, LEYGRAF C. Influence of surface treatment of type 304L stainless steel on atmospheric corrosion resistance in urban and marine environments[J]. Corrosion, 2003, 59(3):220-227.
    [37]
    ASAMI K, HASHIMOTO K. Importance of initial surface film in the degradation of stainless steels by atmospheric exposure[J]. Corrosion Science, 2003, 45(10):2263-2283.
    [38]
    SCATIGNO G G, RYAN M P, GIULIANI F, et al. The effect of prior cold work on the chloride stress corrosion cracking of 304L austenitic stainless steel under atmospheric conditions[J]. Materials Science and Engineering:A, 2016, 668:20-29.
    [39]
    ÖRNEK C, IDRIS S, RECCAGNI P, et al. Atmospheric-induced stress corrosion cracking of grade 2205 duplex stainless steel-effects of 475℃ embrittlement and process orientation[J]. Metals, 2016, 6(7):167.
    [40]
    张磊, 程从前, 张志鹏, 等. 液滴干湿循环下不同轧制态2205双相不锈钢的点蚀行为[J]. 材料保护, 2019, 52(9):38-42, 49.
    [41]
    樊栋, 邢燕江, 王海英, 等. 高铁车体结构不锈钢焊接接头的腐蚀行为[J]. 材料保护, 2016, 49(6):73-75, 79, 8.
    [42]
    CHENG C Q, KLINKENBERG L I, ISE Y, et al. Pitting corrosion of sensitised type 304 stainless steel under wet-dry cycling condition[J]. Corrosion Science, 2017, 118:217-226.
    [43]
    MA H C, LIU Z Y, DU C, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide[J]. Corrosion Science, 2015, 100:627-641.
    [44]
    高贤申, 曹燕秋, 周立法. 不锈钢设备与系统表面钝化处理的检查和评定——ASME BPE非强制性附录E的介绍和解读[J]. 机电信息, 2014(14):53-59.
    [45]
    Standard practice for cleaning, descaling, and passivation of stainless steel parts, equipment, and systems:ASTM A380-2006[S].[S.l.]:[s.n.], ASTM, 2006.
    [46]
    工业设备化学清洗中奥氏体不锈钢钝化膜质量的测试方法蓝点法:GB/T 25150-2010[S]. 北京:中国标准出版社, 2011.
    [47]
    杨树凯, 程从前, 侯艳, 等. 核电站不锈钢表面钝化膜的显色检测应用及质检策略[J]. 材料保护, 2016, 49(12):91-94, 8.
    [48]
    CHENG C Q, YANG S K, ZHAO J. Use of color-change indicators to quantify passive films on the stainless steel valves of nuclear power plants[J]. Nuclear Engineering and Design, 2016, 297:267-275.
    [49]
    CHENG C Q, ZHAO J, CAO T S, et al. Facile chromaticity approach for the inspection of passive films on austenitic stainless steel[J]. Corrosion Science, 2013, 70:235-242.
    [50]
    YANG Q Y, CHENG C Q, RUAN F P, et al. Highly sensitive image recognition on iron contamination for 316L austenitic stainless steel by regent additives into color-change indicator[J]. Journal of Nondestructive Evaluation, 2020, 39(1):1-10.
    [51]
    国家能源局. 核电厂常规岛设备和管道防腐蚀工程质量验收规范:NB/T 25079-2018[S]. 北京:中国电力出版社, 2018.

Catalog

    Article views (11) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return