Citation: | WEI Huanhuan, JIA Pengxiao, ZHENG Dongdong, XIN Zhenke. Research Progress on Mechanical Properties of High Strength Steel in Corrosive Environment[J]. Corrosion & Protection, 2023, 44(5): 51-56. DOI: 10.11973/fsyfh-202305010 |
[1] |
BRANCO R. High-strength steels:new trends in production and applications[M]. New York:Nova Science Publishers, Incorporated, 2018.
|
[2] |
CHATTERJEE D. Behind the development of advanced high strength steel (AHSS) including stainless steel for automotive and structural applications-an overview[J]. Materials Science and Metallurgy Engineering, 2017, 4(1):1-15.
|
[3] |
施刚, 班慧勇, 石永久, 等. 高强度钢材钢结构研究进展综述[J]. 工程力学, 2013, 30(1):1-13.
|
[4] |
郝际平, 孙晓岭, 薛强, 等. 绿色装配式钢结构建筑体系研究与应用[J]. 工程力学, 2017, 34(1):1-13.
|
[5] |
李国强. 高性能钢结构若干重要概念及实现方法[J]. 建筑钢结构进展, 2020, 22(5):1-18.
|
[6] |
黄博. Q460D钢动态力学性能及Taylor杆拉伸撕裂数值预报研究[D]. 哈尔滨:哈尔滨理工大学, 2020.
|
[7] |
阮家顺, 陈家菊, 向晋华, 等. 港珠澳大桥138号钢桥塔整体段翻身技术[J]. 世界桥梁, 2019, 47(2):6-10.
|
[8] |
雷天奇, 魏欢欢, 郑东东, 等. 高强度钢材腐蚀疲劳研究综述[J]. 山东电力高等专科学校学报, 2021, 24(6):48-52, 62.
|
[9] |
YANG J L, XI G, FAN X. Progress of mechanism and research methods of marine corrosion of steels[J]. Applied Mechanics and Materials, 2011, 80/81:3-6.
|
[10] |
刘薇, 王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2010, 30(6):504-512.
|
[11] |
XIN H H, CORREIA J A F O, VELJKOVIC M, et al. Residual stress effects on fatigue life prediction using hardness measurements for butt-welded joints made of high strength steels[J]. International Journal of Fatigue, 2021, 147:106175.
|
[12] |
雷宏刚, 付强, 刘晓娟. 中国钢结构疲劳研究领域的30年进展[J]. 建筑结构学报, 2010, 31(S1):84-91.
|
[13] |
LIU M. Effect of uniform corrosion on mechanical behavior of E690 high-strength steel lattice corrugated panel in marine environment:a finite element analysis[J]. Materials Research Express, 2021, 8(6):066510.
|
[14] |
GUO H C, WEI H H, KOU J L, et al. Mechanical properties test of butt welds of corroded Q690 high strength steel under the coupling of damp-heat cycle dipping[J]. Applied Ocean Research, 2021, 111:102677.
|
[15] |
GUO H C, WEI H H, LI G Q, et al. Experimental research on fatigue performance of butt welds of corroded Q690 high strength steel[J]. Journal of Constructional Steel Research, 2021, 184:106801.
|
[16] |
GREGORY V. High strength corrosion resistant steel for aircraft landing gears and structures[J]. SAE International Journal of Advances and Current Practices in Mobility, 2021, 3(3):1240-1243.
|
[17] |
ZHANG H M, LI Y, YAN L, et al. Effect of large load on the wear and corrosion behavior of high-strength EH47 hull steel in 3.5wt% NaCl solution with sand[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11):1525-1535.
|
[18] |
GONG K, WU M, LIU G X. Comparative study on corrosion behaviour of rusted X100 steel in dry/wet cycle and immersion environments[J]. Construction and Building Materials, 2020, 235:117440.
|
[19] |
马宏驰, 杜翠薇, 刘智勇, 等. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4):469-479.
|
[20] |
郑宝星, 邓小虎, 董纪. 显微组织对25CrMo48V超高强度钢在NaCl溶液中腐蚀行为的影响[J]. 材料热处理学报, 2020, 41(4):107-115.
|
[21] |
杨恒, 吴开明, 王宇航, 等. 高强度海工钢中腐蚀活性夹杂物与耐海水腐蚀性能研究[J]. 钢铁研究学报, 2021, 33(7):610-618.
|
[22] |
刘洋阳. 基于腐蚀形貌Q690E钢板及焊接接头力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
|
[23] |
张伟. 腐蚀对高性能钢试件静力和疲劳性能影响的试验研究[D]. 长沙:长沙理工大学, 2017.
|
[24] |
TALEBI M, ZEINODDINI M, MO'TAMEDI M, et al. Collapse of HSLA steel pipes under corrosion exposure and uniaxial inelastic cycling[J]. Journal of Constructional Steel Research, 2018, 144:253-269.
|
[25] |
PIDAPARTI R M, PATEL R R. Correlation between corrosion pits and stresses in Al alloys[J]. Materials Letters, 2008, 62(30):4497-4499.
|
[26] |
APPUHAMY J M R S, KAITA T, OHGA M, et al. Prediction of residual strength of corroded tensile steel plates[J]. International Journal of Steel Structures, 2011, 11(1):65-79.
|
[27] |
彭建新, 张伟, 阳逸鸣, 等. 腐蚀对高性能钢Q550E力学指标影响的试验研究[J]. 公路交通科技, 2018, 35(10):56-62.
|
[28] |
张航, 张雷雷, 胡书晨, 等. 氯盐腐蚀对持荷钢绞线的性能退化的影响[J]. 科学技术与工程, 2018, 18(14):232-236.
|
[29] |
HU F X, SHI G. Experimental study on seismic behavior of high strength steel frames:local response[J]. Engineering Structures, 2021, 229:111620.
|
[30] |
董晋琦, 郑山锁, 张晓辉, 等. 氯盐锈蚀钢框架柱抗震性能试验及恢复力模型研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(10):1050-1060.
|
[31] |
王友德, 史涛, 徐善华, 等. 一般大气环境锈蚀钢柱抗震性能试验与数值分析[J]. 土木工程学报, 2021, 54(6):62-78.
|
[32] |
梁岩, 罗小勇, 张艳芳. 反复荷载作用下锈蚀高强钢筋的性能变化[J]. 建筑材料学报, 2015, 18(1):145-149, 167.
|
[33] |
MENDIGUREN J, CORTÉS F, GALDOS L, et al. Strain path's influence on the elastic behaviour of the TRIP 700 steel[J]. Materials Science and Engineering:A, 2013, 560:433-438.
|
[34] |
ILYIN A V, FILIN V Y. On the problem of quantitative service life assessment for high-strength steel welded structures under the effect of corrosion medium[J]. Procedia Structural Integrity, 2019, 14:964-977.
|
[35] |
GUO H C, LEI T Q, YU J G, et al. Experimental study on mechanical properties of Q690 high strength steel in marine corrosive environment[J]. International Journal of Steel Structures, 2021, 21(2):717-730.
|
[36] |
WANG Y B, LI G Q, CUI W, et al. Experimental investigation and modeling of cyclic behavior of high strength steel[J]. Journal of Constructional Steel Research, 2015, 104:37-48.
|
[37] |
韩飞, 周子浩, 王允. Q&P980超高强钢的循环加载性能和微观组织表征[J]. 清华大学学报(自然科学版), 2018, 58(7):677-683.
|
[38] |
高凯凯, 崔祎菲, 张鹏, 等. 氯盐侵蚀下碱激发混凝土内钢筋锈蚀研究进展[J]. 硅酸盐通报, 2020, 39(10):3070-3077.
|
[39] |
廖晓, 季涛, 李伟华. 海工混凝土结构钢筋锈蚀防护研究进展[J]. 混凝土, 2017(3):15-18, 23.
|
[40] |
SUN J, CHEN S Y, QU Y P, et al. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller[J]. Chinese Journal of Mechanical Engineering, 2015, 28(2):217-225.
|
[41] |
ZHENG Y Q, WANG Y. Damage evolution simulation and life prediction of high-strength steel wire under the coupling of corrosion and fatigue[J]. Corrosion Science, 2020, 164:108368.
|
[42] |
张春涛. 腐蚀环境和风振疲劳耦合作用下输电塔线体系疲劳性能研究[D]. 重庆:重庆大学, 2012.
|
[43] |
郭宏超, 魏欢欢, 杨迪雄, 等. 海洋腐蚀环境下Q690高强钢材疲劳性能试验研究[J]. 土木工程学报, 2021, 54(5):36-45.
|
[44] |
李辉, 付磊, 林莉, 等. 金属材料的腐蚀疲劳研究进展[J]. 热加工工艺, 2021, 50(6):7-12.
|
[45] |
SABELKIN V, MALL S, MISAK H. Corrosion fatigue of coated AISI 4340 high strength steel with dent damage[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(3):653-662.
|
[46] |
PÉREZ-MORA R, PALIN-LUC T, BATHIAS C, et al. Very high cycle fatigue of a high strength steel under sea water corrosion:a strong corrosion and mechanical damage coupling[J]. International Journal of Fatigue, 2015, 74:156-165.
|
[47] |
DOMÍNGUEZ ALMARAZ G M, MORA R P. Ultrasonic fatigue testing on high strength steel:effect of stress concentration factors associated with corrosion pitting holes[J]. International Journal of Damage Mechanics, 2013, 22(6):860-877.
|
[48] |
EL MAY M, PALIN-LUC T, SAINTIER N, et al. Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3[J]. International Journal of Fatigue, 2013, 47:330-339.
|
[49] |
MA H C, ZHAO J B, FAN Y, et al. Comparative study on corrosion fatigue behaviour of high strength low alloy steel and simulated HAZ microstructures in a simulated marine atmosphere[J]. International Journal of Fatigue, 2020, 137:105666.
|
[50] |
曾德智, 李皓, 孙宜成, 等. 应力与环境耦合条件下高强钢S135的疲劳行为[J]. 钢铁研究学报, 2018, 30(12):983-990.
|
[51] |
张慧霞, 戚霞, 邓春龙, 等. 极化电位下高强钢腐蚀疲劳裂纹扩展的表征[J]. 腐蚀科学与防护技术, 2011, 23(3):228-232.
|
[52] |
GUO H C, WEI H H, LI G Q, et al. Experimental research on fatigue performance of corroded Q690 high-strength steel[J]. Journal of Materials in Civil Engineering, 2021, 33(11):1-10.
|
[53] |
魏欢欢. 湿热周浸环境下锈蚀Q690高强钢对接焊缝疲劳性能研究[D]. 西安:西安理工大学, 2021.
|
[54] |
李彤宇. 湿热周浸环境下Q690高强钢疲劳性能研究[D]. 西安:西安理工大学, 2020.
|