• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
WEI Huanhuan, JIA Pengxiao, ZHENG Dongdong, XIN Zhenke. Research Progress on Mechanical Properties of High Strength Steel in Corrosive Environment[J]. Corrosion & Protection, 2023, 44(5): 51-56. DOI: 10.11973/fsyfh-202305010
Citation: WEI Huanhuan, JIA Pengxiao, ZHENG Dongdong, XIN Zhenke. Research Progress on Mechanical Properties of High Strength Steel in Corrosive Environment[J]. Corrosion & Protection, 2023, 44(5): 51-56. DOI: 10.11973/fsyfh-202305010

Research Progress on Mechanical Properties of High Strength Steel in Corrosive Environment

More Information
  • Received Date: August 08, 2021
  • After long-term service in a complex environment, exfoliation and corrosion happen on the surface of load-bearing components of high strength steel. Under the action of alternating loads, the load-bearing components are prone to brittle failure. So the durability problem becomes increasingly prominent. The research achievements of high strength steel and their welded joints in recent years are summarized, mainly including corrosion damage mechanism, static tensile performance, hysteretic performance and fatigue performance, based on the aspects of material itself, environmental factors and load effects. Finally, the research prospect of high strength steel in corrosive environment is proposed.
  • [1]
    BRANCO R. High-strength steels:new trends in production and applications[M]. New York:Nova Science Publishers, Incorporated, 2018.
    [2]
    CHATTERJEE D. Behind the development of advanced high strength steel (AHSS) including stainless steel for automotive and structural applications-an overview[J]. Materials Science and Metallurgy Engineering, 2017, 4(1):1-15.
    [3]
    施刚, 班慧勇, 石永久, 等. 高强度钢材钢结构研究进展综述[J]. 工程力学, 2013, 30(1):1-13.
    [4]
    郝际平, 孙晓岭, 薛强, 等. 绿色装配式钢结构建筑体系研究与应用[J]. 工程力学, 2017, 34(1):1-13.
    [5]
    李国强. 高性能钢结构若干重要概念及实现方法[J]. 建筑钢结构进展, 2020, 22(5):1-18.
    [6]
    黄博. Q460D钢动态力学性能及Taylor杆拉伸撕裂数值预报研究[D]. 哈尔滨:哈尔滨理工大学, 2020.
    [7]
    阮家顺, 陈家菊, 向晋华, 等. 港珠澳大桥138号钢桥塔整体段翻身技术[J]. 世界桥梁, 2019, 47(2):6-10.
    [8]
    雷天奇, 魏欢欢, 郑东东, 等. 高强度钢材腐蚀疲劳研究综述[J]. 山东电力高等专科学校学报, 2021, 24(6):48-52, 62.
    [9]
    YANG J L, XI G, FAN X. Progress of mechanism and research methods of marine corrosion of steels[J]. Applied Mechanics and Materials, 2011, 80/81:3-6.
    [10]
    刘薇, 王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2010, 30(6):504-512.
    [11]
    XIN H H, CORREIA J A F O, VELJKOVIC M, et al. Residual stress effects on fatigue life prediction using hardness measurements for butt-welded joints made of high strength steels[J]. International Journal of Fatigue, 2021, 147:106175.
    [12]
    雷宏刚, 付强, 刘晓娟. 中国钢结构疲劳研究领域的30年进展[J]. 建筑结构学报, 2010, 31(S1):84-91.
    [13]
    LIU M. Effect of uniform corrosion on mechanical behavior of E690 high-strength steel lattice corrugated panel in marine environment:a finite element analysis[J]. Materials Research Express, 2021, 8(6):066510.
    [14]
    GUO H C, WEI H H, KOU J L, et al. Mechanical properties test of butt welds of corroded Q690 high strength steel under the coupling of damp-heat cycle dipping[J]. Applied Ocean Research, 2021, 111:102677.
    [15]
    GUO H C, WEI H H, LI G Q, et al. Experimental research on fatigue performance of butt welds of corroded Q690 high strength steel[J]. Journal of Constructional Steel Research, 2021, 184:106801.
    [16]
    GREGORY V. High strength corrosion resistant steel for aircraft landing gears and structures[J]. SAE International Journal of Advances and Current Practices in Mobility, 2021, 3(3):1240-1243.
    [17]
    ZHANG H M, LI Y, YAN L, et al. Effect of large load on the wear and corrosion behavior of high-strength EH47 hull steel in 3.5wt% NaCl solution with sand[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(11):1525-1535.
    [18]
    GONG K, WU M, LIU G X. Comparative study on corrosion behaviour of rusted X100 steel in dry/wet cycle and immersion environments[J]. Construction and Building Materials, 2020, 235:117440.
    [19]
    马宏驰, 杜翠薇, 刘智勇, 等. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4):469-479.
    [20]
    郑宝星, 邓小虎, 董纪. 显微组织对25CrMo48V超高强度钢在NaCl溶液中腐蚀行为的影响[J]. 材料热处理学报, 2020, 41(4):107-115.
    [21]
    杨恒, 吴开明, 王宇航, 等. 高强度海工钢中腐蚀活性夹杂物与耐海水腐蚀性能研究[J]. 钢铁研究学报, 2021, 33(7):610-618.
    [22]
    刘洋阳. 基于腐蚀形貌Q690E钢板及焊接接头力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
    [23]
    张伟. 腐蚀对高性能钢试件静力和疲劳性能影响的试验研究[D]. 长沙:长沙理工大学, 2017.
    [24]
    TALEBI M, ZEINODDINI M, MO'TAMEDI M, et al. Collapse of HSLA steel pipes under corrosion exposure and uniaxial inelastic cycling[J]. Journal of Constructional Steel Research, 2018, 144:253-269.
    [25]
    PIDAPARTI R M, PATEL R R. Correlation between corrosion pits and stresses in Al alloys[J]. Materials Letters, 2008, 62(30):4497-4499.
    [26]
    APPUHAMY J M R S, KAITA T, OHGA M, et al. Prediction of residual strength of corroded tensile steel plates[J]. International Journal of Steel Structures, 2011, 11(1):65-79.
    [27]
    彭建新, 张伟, 阳逸鸣, 等. 腐蚀对高性能钢Q550E力学指标影响的试验研究[J]. 公路交通科技, 2018, 35(10):56-62.
    [28]
    张航, 张雷雷, 胡书晨, 等. 氯盐腐蚀对持荷钢绞线的性能退化的影响[J]. 科学技术与工程, 2018, 18(14):232-236.
    [29]
    HU F X, SHI G. Experimental study on seismic behavior of high strength steel frames:local response[J]. Engineering Structures, 2021, 229:111620.
    [30]
    董晋琦, 郑山锁, 张晓辉, 等. 氯盐锈蚀钢框架柱抗震性能试验及恢复力模型研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(10):1050-1060.
    [31]
    王友德, 史涛, 徐善华, 等. 一般大气环境锈蚀钢柱抗震性能试验与数值分析[J]. 土木工程学报, 2021, 54(6):62-78.
    [32]
    梁岩, 罗小勇, 张艳芳. 反复荷载作用下锈蚀高强钢筋的性能变化[J]. 建筑材料学报, 2015, 18(1):145-149, 167.
    [33]
    MENDIGUREN J, CORTÉS F, GALDOS L, et al. Strain path's influence on the elastic behaviour of the TRIP 700 steel[J]. Materials Science and Engineering:A, 2013, 560:433-438.
    [34]
    ILYIN A V, FILIN V Y. On the problem of quantitative service life assessment for high-strength steel welded structures under the effect of corrosion medium[J]. Procedia Structural Integrity, 2019, 14:964-977.
    [35]
    GUO H C, LEI T Q, YU J G, et al. Experimental study on mechanical properties of Q690 high strength steel in marine corrosive environment[J]. International Journal of Steel Structures, 2021, 21(2):717-730.
    [36]
    WANG Y B, LI G Q, CUI W, et al. Experimental investigation and modeling of cyclic behavior of high strength steel[J]. Journal of Constructional Steel Research, 2015, 104:37-48.
    [37]
    韩飞, 周子浩, 王允. Q&P980超高强钢的循环加载性能和微观组织表征[J]. 清华大学学报(自然科学版), 2018, 58(7):677-683.
    [38]
    高凯凯, 崔祎菲, 张鹏, 等. 氯盐侵蚀下碱激发混凝土内钢筋锈蚀研究进展[J]. 硅酸盐通报, 2020, 39(10):3070-3077.
    [39]
    廖晓, 季涛, 李伟华. 海工混凝土结构钢筋锈蚀防护研究进展[J]. 混凝土, 2017(3):15-18, 23.
    [40]
    SUN J, CHEN S Y, QU Y P, et al. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller[J]. Chinese Journal of Mechanical Engineering, 2015, 28(2):217-225.
    [41]
    ZHENG Y Q, WANG Y. Damage evolution simulation and life prediction of high-strength steel wire under the coupling of corrosion and fatigue[J]. Corrosion Science, 2020, 164:108368.
    [42]
    张春涛. 腐蚀环境和风振疲劳耦合作用下输电塔线体系疲劳性能研究[D]. 重庆:重庆大学, 2012.
    [43]
    郭宏超, 魏欢欢, 杨迪雄, 等. 海洋腐蚀环境下Q690高强钢材疲劳性能试验研究[J]. 土木工程学报, 2021, 54(5):36-45.
    [44]
    李辉, 付磊, 林莉, 等. 金属材料的腐蚀疲劳研究进展[J]. 热加工工艺, 2021, 50(6):7-12.
    [45]
    SABELKIN V, MALL S, MISAK H. Corrosion fatigue of coated AISI 4340 high strength steel with dent damage[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(3):653-662.
    [46]
    PÉREZ-MORA R, PALIN-LUC T, BATHIAS C, et al. Very high cycle fatigue of a high strength steel under sea water corrosion:a strong corrosion and mechanical damage coupling[J]. International Journal of Fatigue, 2015, 74:156-165.
    [47]
    DOMÍNGUEZ ALMARAZ G M, MORA R P. Ultrasonic fatigue testing on high strength steel:effect of stress concentration factors associated with corrosion pitting holes[J]. International Journal of Damage Mechanics, 2013, 22(6):860-877.
    [48]
    EL MAY M, PALIN-LUC T, SAINTIER N, et al. Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3[J]. International Journal of Fatigue, 2013, 47:330-339.
    [49]
    MA H C, ZHAO J B, FAN Y, et al. Comparative study on corrosion fatigue behaviour of high strength low alloy steel and simulated HAZ microstructures in a simulated marine atmosphere[J]. International Journal of Fatigue, 2020, 137:105666.
    [50]
    曾德智, 李皓, 孙宜成, 等. 应力与环境耦合条件下高强钢S135的疲劳行为[J]. 钢铁研究学报, 2018, 30(12):983-990.
    [51]
    张慧霞, 戚霞, 邓春龙, 等. 极化电位下高强钢腐蚀疲劳裂纹扩展的表征[J]. 腐蚀科学与防护技术, 2011, 23(3):228-232.
    [52]
    GUO H C, WEI H H, LI G Q, et al. Experimental research on fatigue performance of corroded Q690 high-strength steel[J]. Journal of Materials in Civil Engineering, 2021, 33(11):1-10.
    [53]
    魏欢欢. 湿热周浸环境下锈蚀Q690高强钢对接焊缝疲劳性能研究[D]. 西安:西安理工大学, 2021.
    [54]
    李彤宇. 湿热周浸环境下Q690高强钢疲劳性能研究[D]. 西安:西安理工大学, 2020.

Catalog

    Article views (12) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return