• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
LIU Huajian, CHEN Bingchuan, AI Hua, YANG Xinmei, ZHOU Xingtai. Corrosion Behavior of 316H in NaCl-KCl-MgCl2 Molten Salt[J]. Corrosion & Protection, 2023, 44(7): 69-74. DOI: 10.11973/fsyfh-202307012
Citation: LIU Huajian, CHEN Bingchuan, AI Hua, YANG Xinmei, ZHOU Xingtai. Corrosion Behavior of 316H in NaCl-KCl-MgCl2 Molten Salt[J]. Corrosion & Protection, 2023, 44(7): 69-74. DOI: 10.11973/fsyfh-202307012

Corrosion Behavior of 316H in NaCl-KCl-MgCl2 Molten Salt

More Information
  • Received Date: June 19, 2022
  • The corrosion behavior of 316H (stainless steel) in 700 ℃ chloride molten salt was systematically studied using a combination of static corrosion test and dynamic corrosion test. The results showed that after 1 000 hours of static corrosion, 316H exhibited significant intergranular corrosion in the unpurified molten salt, with a corrosion depth about 80 μm. In purified molten salt, the corrosion of 316H was relatively weak, and the surface of the sample after corrosion had a Cr deficient layer about 3 μm thick. After dynamic dynamic corrosion, the thickness of the Cr deficient layer on the surface of the sample was about 6 μm. Adding metal Mg to the chloride molten salt could effectively suppress the intergranular corrosion of 316H.
  • [1]
    MARK M,CRAIG T,JUDITH V,et al. Concentrating Solar Power Gen3 Demonstration Roadmap[R]. Colorado,NREL/TP-5500-67464.2017.
    [2]
    尹辉斌,丁静,杨晓西. 聚焦式太阳能热发电中的蓄热技术及系统[J]. 热能动力工程,2013,28(1):1-6,105.
    [3]
    王玉倩. 熔盐储能材料在太阳能光热发电中的应用[J]. 化学工业,2019,37(6)28-33,39.
    [4]
    孙华,张鹏,王建强. 传热储热用熔融硝酸盐及其腐蚀问题[J]. 腐蚀科学与防护技术,2017,29(5):567-574.
    [5]
    沈向阳,丁静,彭强,等. 高温熔盐在太阳能热发电中的应用[J]. 广东化工,2007,34(11)49-52.
    [6]
    LI P W,CHAN C L,HAO Q,et al. Halide and oxy-halide eutectic systems for high-performance,high-temperature heat transfer fluids[C]//Sunshot Concentrating Solar Power Program Review 2013. Phoenix,Arizona,2013:85.
    [7]
    KRUIZENGA A. Corrosion mechanisms in chloride and carbonate salts[R]. Albuquerque,Livermore:Sandia National Laboratories, 2012.
    [8]
    SOHAL M,EBNER M,SABHARWALL P,et al. Engineering database of liquid salt thermo-physical and thermo-chemical properties[R]. Idaho Falls:Idaho National Laboratory,2010.
    [9]
    OZERYANAYA I N. Corrosion of metals by molten salts in heat-treatment processes[J]. Metal Science and Heat Treatment,1985,27(3):184-188.
    [10]
    KOGER J W. Corrosion and mass transfer characteristics of NaBF3-NaF (92-8 mole%) in Hastelloy N.[R]. ORNL-TM-3866,Oak Ridge:Oak Ridge National Laboratory,1972.
    [11]
    DELPECH S,CABET C,SLIM C,et al. Molten fluorides for nuclear applications[J]. Materials Today,2010,13(12):34-41.
    [12]
    XINMEI,YANG. Corrosion behavior of GH3535 alloy in molten LiF-BeF2 salt[J]. Corrosion Science,2022,199:110168.
    [13]
    AMBROSEK J W. Molten chloride salts for heat transfer in nuclear systems[D]. Madison,WI,USA:The University of Wisconsin-Madison,2011.
    [14]
    WILLIAMS D F. Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop[R]. Oak Ridge:Oak Ridge National Laboratory,2006.
    [15]
    DING W J,SHI H,JIANU A,et al. Molten chloride salts for next generation concentrated solar power plants:Mitigation strategies against corrosion of structural materials[J]. Solar Energy Materials and Solar Cell,2019,193(1):298-313.
    [16]
    GARCIADIAZ B L,OLSON L,Martinez R M,et al. High temperature electrochemical engineering and clean energy systems[J]. Journal of the South Carolina Academy of Science,2016,14(1):11-14.
    [17]
    ALSADAT TAVAKOLI MEHRABADI B,WEIDNER J W,GARCIA-DIAZ B,et al. Modeling the effect of cathodic protection on superalloys inside high temperature molten salt systems[J]. Journal of the Electrochemical Society,2017,164(4):C171-C179.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return