Citation: | LIU Ming, ZHANG Hao, SU Jianying, WANG Meifeng, WANG Xiayan. Growth Mechanism and Corrosion Resistance of Replacement Copper Coating on Carbon Steel Surface[J]. Corrosion & Protection, 2024, 45(3): 1-6. DOI: 10.11973/fsyfh-202403001 |
Copper coating was prepared on surface of the 20# carbon steel by self-developed displacement copper plating solution. The effect of replacement copper plating time on the corrosion resistance of copper coating was studied by electrochemical test, and the growth regulation of copper coating was analyzed. The results show that with the increase of replacement copper plating time, the free corrosion potential of the coating shifted positively, the free corrosion current density decreased, and the charge transfer resistance (Rct) increased significantly. When the replacement copper plating time was 16 h, Rct value was the largest, and the corrosion resistance of copper coating was the best. The growth of the replacement copper coating was divided into three stages. In the early stage, a barrier layer and a porous layer were formed. In the middle stage, a barrier layer, a dense layer and a porous layer were formed. In the later stage, a barrier layer and a dense layer were formed.
[1] |
元泉, 邱媛, 高晶, 等. 45钢表面HEDP镀铜研究[J]. 电镀与精饰, 2020, 42(10): 17-20.
|
[2] |
陈海燕, 冯伟莹, 张琛, 等. 环保型柠檬酸盐体系镀铜工艺[J]. 电镀与环保, 2018, 38(6): 1-4.
|
[3] |
邱媛, 彭华领, 于宽深. 钢铁表面HEDP镀铜与氰化镀铜工艺比较[J]. 电镀与精饰, 2017, 39(8): 29-32.
|
[4] |
范小玲, 谢金平, 黄崴, 等. 钢铁基体上HEDP体系无氰滚镀铜工艺[J]. 电镀与涂饰, 2015, 34(9): 487-490,535.
|
[5] |
HUANG J H, SHIH P S, RENGANATHAN V, et al. Development of high copper concentration, low operating temperature, and environmentally friendly electroless copper plating using a copper-glycerin complex solution[J]. Electrochimica Acta, 2022, 425: 140710.
|
[6] |
WU X M, SHA W. Surface morphology of electroless copper deposits using different reducing agents[J]. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 2008, 38(3): 292-296.
|
[7] |
卢建红, 邓小梅, 阎建辉, 等. 2,2联吡啶对化学铜二元络合剂体系沉积过程的影响[J]. 材料导报, 2020, 34(S2): 1539-1542,1548.
|
[8] |
李伯超, 张伟东, 宋斌, 等. 化学沉积法镀铜的工艺及溶液组成[J]. 冶金与材料, 2020, 40(4): 58-59.
|
[9] |
赵文霞, 陈怀军, 闫亚妮, 等. 2,6-二氨基吡啶对EDTA体系低温化学镀铜的影响[J]. 应用化工, 2018, 47(9): 1830-1833.
|
[10] |
张丽, 张彦. 化学镀的研究进展及发展趋势[J]. 表面技术, 2017, 46(12): 104-109.
|
[11] |
LI J, KOHL P A. The deposition characteristics of accelerated nonformaldehyde electroless copper plating[J]. Journal of the Electrochemical Society, 2003, 150(8): C558.
|
[12] |
ANIK T, TOUHAMI M E, HIMM K, et al. Influence of pH solution on electroless copper plating using sodium hypophosphite as reducing agent[J]. International Journal of Electrochemical Science, 2012, 7(3): 2009-2018.
|
[13] |
高志强, 沈晓冬, 崔升, 等. 化学镀铜的研究进展[J]. 材料导报, 2007, 21(S1): 217-219.
|
[14] |
刘烈炜, 卢波兰, 吴曲勇, 等. 化学置换镀铜研究进展[J]. 材料保护, 2004, 37(12): 36-38,68.
|
[15] |
陈永言, 王瑞祥, 陈松, 等. 化学置换镀铜的研究[J]. 电镀与精饰, 2001, 23(4): 1-4.
|
[16] |
刘烈炜, 卢波兰, 吴曲勇, 等. 钢铁化学置换镀铜的研究[J]. 腐蚀与防护, 2004, 25(12): 523-525.
|
[17] |
董会超, 冯丽婷, 冯绍彬. 化学置换镀铜(合金)研究进展[J]. 郑州轻工业学院学报, 2001, 16(1): 55-57.
|
[18] |
田建华, 陈建, 李春林. 石墨粉表面化学置换镀铜研究[J]. 表面技术, 2009, 38(6): 67-69.
|
[19] |
徐茂. 钢铁基材置换镀铜中硫脲缓蚀剂的效用[J]. 材料保护, 2012, 45(11): 20-21.
|
[20] |
方景礼, 宋文宝, 潘梅剑, 等. 高结合力半光亮化学浸铜工艺研究[J]. 电镀与涂饰, 1992, 11(4): 8-14.
|
[21] |
肖鑫, 龙有前, 郭贤烙, 等. 钢铁件快速化学浸镀铜工艺研究[J]. 腐蚀与防护, 2003, 24(3): 115-118.
|
[22] |
农兰平, 蔡洁, 巩育军. 配位剂和添加剂对钢铁基体化学置换镀铜的影响[J]. 电镀与涂饰, 2011, 30(7): 24-27.
|
[23] |
王瑞祥. 钢铁基体上直接化学镀铜[J]. 材料保护, 1996, 29(11): 30-31.
|
[24] |
徐爱军钢铁基体无公害化学镀铜配方及工艺研究南京南京信息工程大学2008徐爱军. 钢铁基体无公害化学镀铜配方及工艺研究[D]. 南京: 南京信息工程大学, 2008.
|
[25] |
方景礼, 方欣. 金属表面配合物保护膜述评(Ⅱ)——铜及铜合金的防变色配合物膜[J]. 材料保护, 2007, 40(11): 76-80,87.
|
[26] |
王鹏, 梁成浩, 张婕. 铜及其合金防变色工艺研究现状[J]. 材料保护, 2007, 40(3): 52-55,85.
|