Citation: | DU Xiaogang, GAO Yibin, LU Tianai, FU Ke, ZHANG Hao, WANG Xingyi, JIANG Chunhai. Research Progress of Corrosion-Resistant Cast Iron[J]. Corrosion & Protection, 2024, 45(5): 64-72. DOI: 10.11973/fsyfh-202405011 |
The status of development and application of corrosion-resistant cast iron are introduced. The corrosion behavior and mechanism of corrosion-resistant cast iron in various environments are reviewed, and correlations between the composition, microstructure and corrosion resistance of corrosion-resistant cast iron are revealed. The effects of alloying, coating and preparation methods on the corrosion resistance of cast iron are elaborated. Finally, the development tendency of corrosion-resistant cast iron is prospected.
[1] |
NGQASE M, PAN X W. An overview on types of white cast irons and high chromium white cast irons[J].Journal of Physics: Conference Series, 2020, 1495(1): 012023.
|
[2] |
STEFANESCU D M. The meritocratic ascendance of cast iron: from magic to virtual cast iron[J].International Journal of Metalcasting, 2019, 13(4): 726-752.
|
[3] |
KURYLO P. Modernization and optimization of phosphoric cast iron casting[J].Metals, 2019, 9(10): 1060.
|
[4] |
LI X G, ZHANG D W, LIU Z Y, et al. Materials science: share corrosion data[J].Nature, 2015, 527: 441-442.
|
[5] |
ZHANG X M, CHEN Z Y, LUO H F, et al. Corrosion resistances of metallic materials in environments containing chloride ions: a review[J].Transactions of Nonferrous Metals Society of China, 2022, 32(2): 377-410.
|
[6] |
吴德海, 王怀林, 张伯明. 铸铁的合金化及合金铸铁的分类[J].铸造工程, 2020, 44(3): 10-12.
|
[7] |
王坤, 汤宏群, 曾建民, 等. 国内外低合金耐蚀铸铁的研究与发展趋势[J].矿山机械, 2017, 45(8): 1-5.
|
[8] |
ZHANG Y, XIAO J, ZHANG Y S, et al. The study on corrosion behavior and corrosion resistance of ultralow carbon high silicon iron-based alloy[J].Materials Research Express, 2021, 8(2): 026504.
|
[9] |
ZHANG Y, XIAO J, YANG S G, et al. Effect of electrolysis parameters on corrosion resistance of extra-low carbon high silicon iron-based alloy[J].Anti-Corrosion Methods and Materials, 2022, 69(2): 121-130.
|
[10] |
ANNALISA F, ALESSIO S, ALESSANDRO V, et al. Microstructural and erosive wear characteristics of a high chromium cast iron[J].Coatings, 2021, 11(5): 490.
|
[11] |
LI X R, LIU J B, XIONG J, et al. Wear and corrosion resistant Mn-doped austenitic cast iron prepared by powder metallurgy method[J].Journal of Materials Research and Technology, 2020, 9(3): 6376-6385.
|
[12] |
HE A P, ZENG J M. Direct preparation of low Ni-Cr alloy cast iron from red mud and laterite nickel ore[J].Materials & Design, 2017, 115: 433-440.
|
[13] |
MEDYŃSKI D, JANUS A, SAMOCIUK B, et al. Effect of microstructures on working properties of nickel-manganese-copper cast iron[J].Metals, 2018, 8(5): 341.
|
[14] |
DEKKER L, TONN B, LILIENKAMP G. Effect of antimony on graphite growth in ductile iron[J].International Journal of Metalcasting, 2020, 14(3): 827-835.
|
[15] |
WASIM M, SHOAIB S, MUBARAK N M, et al. Factors influencing corrosion of metal pipes in soils[J].Environmental Chemistry Letters, 2018, 16(3): 861-879.
|
[16] |
LI J, SU H, CHAI F, et al. Simulated corrosion test of Q235 steel in diatomite soil[J].Journal of Iron and Steel Research International, 2015, 22(4): 352-360.
|
[17] |
LIU D, HUANG Y M, AN S S, et al. Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients[J].Catena, 2018, 162: 345-353.
|
[18] |
EZUBER H M, ALSHATER A, ZAKIR HOSSAIN S M, et al. Impact of soil characteristics and moisture content on the corrosion of underground steel pipelines[J].Arabian Journal for Science and Engineering, 2021, 46(7): 6177-6188.
|
[19] |
MU M M, LIU S H, NIE K B, et al. Galvanic corrosion of stainless-clad steel ground rods in acidic soils[J]. Materials Performance, 2017, 56(6): 24-27.
|
[20] |
SUN C, XU J, WANG F H, et al. Effect of sulfate reducing bacteria on corrosion of stainless steel 1Cr18Ni9Ti in soils containing chloride ions[J].Materials Chemistry and Physics, 2011, 126(1/2): 330-336.
|
[21] |
ZHANG C, LIAO Y X, GAO X, et al. Research advances of soil corrosion of grounding grids[J].Micromachines, 2021, 12(5): 513.
|
[22] |
DANGTIM D K, AJOGE E O. Stress corrosion resistance capacity: austempered ductile iron and high strength alloy steels in marine environment[J].Annals of the Faculty of Engineering Hunedoara, 2019, 17(2): 193-199.
|
[23] |
YAO J P, ZHONG S. Research on the alkali corrosion resistance mechanism of Ni-Cr-Cu alloy cast iron[J].Advanced Materials Research, 2011, 230/231/232: 1298-1302.
|
[24] |
黄林林, 何应琳. 兰州石化浓硝酸装置耐腐蚀材料的选择及应用情况[J].中氮肥, 2018(5): 37-41.
|
[25] |
IBRAHIM S. Influence of different media on some cooking utensils[J]. Science, 2021, 6(1): 49-52.
|
[26] |
涂国和, 程玮仪, 余灿宇, 等. 锅具金属材料导热特性的研究[J].当代化工研究, 2021(19): 156-157.
|
[27] |
MEDYŃSKI D, SAMOCIUK B, JANUS A, et al. Effect of Cr, Mo and Al on microstructure, abrasive wear and corrosion resistance of Ni-Mn-Cu cast iron[J].Materials, 2019, 12(21): 3500.
|
[28] |
王勇, 张洋, 马永健, 等. 高韧性球墨铸铁阀体铸件材料性能的优化[J].热加工工艺, 2019, 48(1): 89-92.
|
[29] |
宋延沛, 王悔改, 李丽, 等. 变质处理对耐磨耐蚀铸铁组织及性能的影响[J].钢铁, 2019, 54(9): 106-109, 115.
|
[30] |
SOFFRITTI C, CALZOLARI L, BALBO A, et al. Conservation state of cast iron metalworks in European street furniture[J].The European Physical Journal Plus, 2019, 134(9): 424.
|
[31] |
申泽骥, 苏贵桥. 铸铁的电化学腐蚀机理[J].现代铸铁, 2002, 22(1): 13-16.
|
[32] |
ÇELIK G A, TZINI M I T, POLAT Ş, et al. Thermal and microstructural characterization of a novel ductile cast iron modified by aluminum addition[J].International Journal of Minerals, Metallurgy and Materials, 2020, 27(2): 190-199.
|
[33] |
TOMLINSON W J, TALKS M G. Erosion and corrosion of cast iron under cavitation conditions[J].Tribology International, 1991, 24(2): 67-75.
|
[34] |
PEDEFERRI P. Intergranular and selective corrosion[M]// Corrosion Science and Engineering.[S.l.]: Springer Cham, 2018: 297-311.
|
[35] |
BAER W. Chunky graphite in ferritic spheroidal graphite cast iron: formation, prevention, characterization, impact on properties: an overview[J].International Journal of Metalcasting, 2020, 14(2): 454-488.
|
[36] |
王志刚. 球墨铸铁防锈处理的研究[J].冶金管理, 2021(23): 11-12.
|
[37] |
UPADHYAY S, SAXENA K K. Effect of Cu and Mo addition on mechanical properties and microstructure of grey cast iron: an overview[J].Materials Today: Proceedings, 2020, 26: 2462-2470.
|
[38] |
LI P, YANG Y H, SHEN D P, et al. Mechanical behavior and microstructure of hypereutectic high chromium cast iron: the combined effects of tungsten, manganese and molybdenum additions[J].Journal of Materials Research and Technology, 2020, 9(3): 5735-5748.
|
[39] |
HADJI A, BOUHAMLA K, MAOUCHE H. Improving wear properties of high-chromium cast iron by manganese alloying[J].International Journal of Metalcasting, 2016, 10(1): 43-55.
|
[40] |
OQUAB D, XU N, MONCEAU D, et al. Subsurface microstructural changes in a cast heat resisting alloy caused by high temperature corrosion[J].Corrosion Science, 2010, 52(1): 255-262.
|
[41] |
ALI M, ALSHALAL I, AL ZUBAIDI F N, et al. Improvement of corrosion and erosion resistance properties for cast iron[J].IOP Conference Series: Materials Science and Engineering, 2020, 881(1): 012068.
|
[42] |
SCHEIDHAUER N, DOMMASCHK C, WOLF G. Oxidation resistant cast iron for high temperature application[J].Materials Science Forum, 2018, 925: 393-399.
|
[43] |
GILEWSKI R, KOPYCIŃSKI D, GUZIK E, et al. Shaping the microstructure of high-aluminum cast iron in terms of the phenomenon of spontaneous decomposition generated by the presence of aluminum carbide[J].Materials, 2021, 14(20): 5993.
|
[44] |
ABBASI H R, BAZDAR M, HALVAEE A. Effect of phosphorus as an alloying element on microstructure and mechanical properties of pearlitic gray cast iron[J].Materials Science and Engineering: A, 2007, 444(1/2): 314-317.
|
[45] |
KHUNTRAKOOL C, JANUDOM S, MUANGJUNBUREE P, et al. Effects of chemical composition on microstructure and properties of high phosphorus grey cast iron brake shoe[J].International Journal of Metalcasting, 2022, 16(3): 1221-1234.
|
[46] |
朱霞. 耐烧碱蚀合金铸铁的研发[J].教育教学论坛, 2016(32): 94-96.
|
[47] |
ZHAO Z Y, HUI P F, LIU F Y, et al. Fabrication of niobium carbide coating on niobium by interstitial carburization[J].International Journal of Refractory Metals and Hard Materials, 2020, 88: 105187.
|
[48] |
JANERKA K, JEZIERSKI J, BARTOCHA D, et al. Microstructure of the synthetic cast iron carburized with different types of carburizers[J].Advanced Materials Research, 2012, 629: 122-126.
|
[49] |
JANERKA K, BARTOCHA D, SZAJNAR J. Quality of carburizers and its influence on carburization process[J].Archives of Foundry Engineering, 2009, 9(3): 249-254.
|
[50] |
KONDAKCI E, SOLAK N. The effect of microstructure on nitriding mechanism of cast iron[J].International Journal of Metalcasting, 2020, 14(4): 1033-1040.
|
[51] |
LIU Y J, SUN Y F, ZHANG W L, et al. Effect of QPQ nitriding parameters on properties of pearlite ductile cast iron[J].International Journal of Metalcasting, 2020, 14(2): 556-563.
|
[52] |
SOKOLOV O D, MANNAPOVA O V, KOSTRZHYTS’KYI A I, et al. Enhancement of the corrosion resistance of gray cast iron by ion nitriding[J].Materials Science, 2006, 42(6): 849-852.
|
[53] |
XIANG S M, JONSSON S, HEDSTRÖM P, et al. Influence of ferritic nitrocarburizing on the high-temperature corrosion-fatigue properties of the Si-Mo-Al cast iron SiMo1000[J].International Journal of Fatigue, 2021, 143: 105984.
|
[54] |
SUN G F, ZHOU R, LI P, et al. Laser surface alloying of C-B-W-Cr powders on nodular cast iron rolls[J].Surface and Coatings Technology, 2011, 205(8/9): 2747-2754.
|
[55] |
陈永雄, 罗政刚, 梁秀兵, 等. 热喷涂技术的装备应用现状及发展前景[J].中国表面工程, 2021, 34(4): 12-18.
|
[56] |
寇元哲. 热轧辊堆焊技术分析研究[J].金属加工(热加工), 2011(10): 47-50.
|
[57] |
XU J, WANG W Y, XIE J, et al. Structure and properties of ductile iron strengthened by laser surface alloying[J].Advanced Materials Research, 2010, 105: 413-416.
|
[58] |
SAIN P K, SHARMA C P, BHARGAVA A K. Microstructure aspects of a newly developed, low cost, corrosion-resistant white cast iron[J].Metallurgical and Materials Transactions A, 2013, 44(4): 1665-1672.
|
[59] |
朱霞. 新型耐碱腐蚀合金铸铁的研制[J].内蒙古石油化工, 2013, 39(14): 7-11.
|
[60] |
DESHPANDE S, JOSHI A, VAGGE S, et al. Corrosion behavior of nodular cast iron in biodiesel blends[J].Engineering Failure Analysis, 2019, 105: 1319-1327.
|
[61] |
DING D, ZHANG Y, YU X B, et al. Effects of environmental factors on corrosion behavior of high-silicon cast iron in Shanxi soil medium[J].Anti-Corrosion Methods and Materials, 2018, 65(6): 538-546.
|
[62] |
ZHENG Z H, CAI H S, HU S M, et alElectrochemical test and Simulation of corrosion rate of five common ground electrode materials2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE)IEEE201814ZHENG Z H, CAI H S, HU S M, et al. Electrochemical test and Simulation of corrosion rate of five common ground electrode materials[C]//2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE).[S.l.]:IEEE, 2018: 1-4.
|
[63] |
WANG Q W, ZHANG J X, GAO Y, et al. Galvanic effect and alternating current corrosion of steel in acidic red soil[J].Metals, 2022, 12(2): 296.
|
[64] |
MELCHERS R E, PETERSEN R B, WELLS T. Empirical models for long-term localised corrosion of cast iron pipes buried in soils[J].Corrosion Engineering, Science and Technology, 2019, 54(8): 678-687.
|
[65] |
尹桂敏. 船体材料选取对防腐防污的性能影响研究[J].舰船科学技术, 2019, 41(2): 1-3.
|
[66] |
MELCHERS R E, HERRON C, EMSLIE R. Long term marine corrosion of cast iron bridge piers[J].Corrosion Engineering, Science and Technology, 2016, 51(4): 248-255.
|
[67] |
MELCHERS R E, EMSLIE R. Investigations for structural safety assessment of corroded cast iron bridge piers[J].Australian Journal of Structural Engineering, 2016, 17(1): 55-66.
|
[68] |
夏卿坤, 刘煜, 程子毅一种低成本耐海水腐蚀球墨铸铁及其制备方法CN113122768A2021-07-16夏卿坤, 刘煜, 程子毅.一种低成本耐海水腐蚀球墨铸铁及其制备方法: CN113122768A [P].2021-07-16.
|
[69] |
吴晓光食品级铸铁锅表面防锈处理方法CN107354464A2017-11-17吴晓光. 食品级铸铁锅表面防锈处理方法:CN107354464A[P].2017-11-17.
|