Citation: | HU Quan, HU Taishan, LI Bo, YI Yongliang, CHEN Junwei, HU Shangmao, WANG Jingang. Influence of Near-Earth Electric Field of Transmission Line on Grounding Electrode Corrosion and Corrosion Protection Measures[J]. Corrosion & Protection, 2024, 45(5): 82-86. DOI: 10.11973/fsyfh-202405013 |
The calculation theory of near-earth electric field of transmission line was introduced, and the simulation model of four-loop transmission line with the same tower was established through Maxwell platform to obtain the distribution characteristics of space electric field and near-earth electric field of transmission line. The corrosion rates of grounding material at different locations of transmission line substation in different voltage levels were measured by using multi-electrode coupling measurement technology, and the corrosion rates of grounding electrode in the presence or absence of near-earth electric field were also measured to study the influence of electric field on grounding electrode corrosion. Finally, the specific measures to mitigate the corrosion of grounding electrode were proposed by combining electric field effect and electrochemical analysis. The results show that the near-earth electric field was stable with intensity about tens of V/m, which could not be ignored. Due to the presence of strong electric field, the atmospheric corrosion rates of grounding material increased by nearly 80 times, and the corrosion rates of the material increased with the increase of voltage level.
[1] |
DESHPANDE K B. Experimental investigation of galvanic corrosion: comparison between SVET and immersion techniques[J]. Corrosion Science, 2010, 52(9): 2819-2826.
|
[2] |
JAYARAMAN T V, GURUSWAMY S, FREE M L. Effect of magnetic field on the corrosion behavior of magnetostrictive iron-gallium alloy single crystals[J]. Corrosion, 2007, 63(11): 1042-1047.
|
[3] |
GHABASHY M A. Effect of magnetic field on the rate of steel corrosion in aqueous solutions[J]. Anti-Corrosion Methods and Materials, 1988, 35(1): 12-13.
|
[4] |
LU Z P, HUANG D L, YANG W. Probing into the effects of a magnetic field on the electrode processes of iron in sulphuric acid solutions with dichromate based on the fundamental electrochemistry kinetics[J]. Corrosion Science, 2005, 47(6): 1471-1492.
|
[5] |
王大成, 曹生现, 吕昌旗. 交流电磁场对几种金属腐蚀行为的影响[J]. 腐蚀与防护, 2018, 39(3): 213-217.
|
[6] |
梅道珺输电线路杆塔接地装置腐蚀诊断与评估研究重庆重庆大学2019梅道珺. 输电线路杆塔接地装置腐蚀诊断与评估研究[D]. 重庆: 重庆大学, 2019.
|
[7] |
张艳梅. 电气设备接地引下线导通测试及分析[J]. 四川电力技术, 2005, 28(6): 8-9, 14.
|
[8] |
接地装置特性参数测量导则: DL/T 475—2006北京中国电力出版社2006接地装置特性参数测量导则: DL/T 475—2006[S]. 北京: 中国电力出版社, 2006.
|
[9] |
ZHANG Z L, WU H, CAO Q Z, et al. Novel method for tower grounding resistance measurement[J]. Electric Power Components and Systems, 2017, 45(13): 1404-1412.
|
[10] |
苏骏, 黄祥柠变电站接地网故障诊断问题的算法研究综述中国高等学校电力系统及其自动化专业第三十届学术年会论文集2014苏骏, 黄祥柠. 变电站接地网故障诊断问题的算法研究综述[C]//中国高等学校电力系统及其自动化专业第三十届学术年会论文集. [出版地不详:出版者不详],2014.
|
[11] |
张蓬鹤, 何俊佳. 接地网缺陷诊断的研究综述[J]. 自动化与仪器仪表, 2009(5): 22-24.
|
[12] |
ZHENG R, HE J L, HU J, et alThe theory and implementation of corrosion diagnosis for grounding systemConference Record of the 2002 IEEE Industry Applications ConferenceIEEE200211201126ZHENG R, HE J L, HU J, et al. The theory and implementation of corrosion diagnosis for grounding system[C]//Conference Record of the 2002 IEEE Industry Applications Conference. [S.l.]:IEEE, 2002: 1120-1126.
|
[13] |
刘渝根, 滕永禧, 陈先禄, 等. 接地网导体状态的诊断方法[J]. 重庆大学学报(自然科学版), 2004, 27(2): 92-95.
|
[14] |
刘健, 倪云峰, 王树奇, 等. 接地网的分块模型及分块故障诊断[J]. 高电压技术, 2011, 37(5): 1194-1202.
|
[15] |
何金良, 曾嵘, 吴维韩发变电站接地网腐蚀及断点的诊断方法及其测量、诊断系统CN1245898 A2000-03-01何金良, 曾嵘, 吴维韩. 发变电站接地网腐蚀及断点的诊断方法及其测量、诊断系统: CN1245898 A[P]. 2000-03-01.
|
[16] |
洪海涛, 彭敏放, 刘聪利, 等. 一种新的接地网智能监测系统[J]. 电力科学与技术学报, 2008, 23(3): 75-78.
|
[17] |
陈雷大型厂、站接地网状态监测与故障诊断系统研究北京华北电力大学2008陈雷. 大型厂、站接地网状态监测与故障诊断系统研究[D]. 北京: 华北电力大学, 2008.
|
[18] |
黄文武, 文习山, 朱正国. 接地网腐蚀与断点诊断软件系统的开发[J]. 高电压技术, 2005, 31(7): 42-44, 67.
|
[19] |
程红丽, 杨燕娜, 刘健, 等. 接地网故障诊断自动测试系统及其关键技术[J]. 高电压技术, 2009, 35(12): 2989-2994.
|