Citation: | HU Qiming, ZHANG Fangcong, ZHANG Ya, CHEN Qiurong. Improvement of Corrosion Resistance and Electrochemical Performance of Magnesium Battery Negative Electrode by Li2CrO4 Inhibitor[J]. Corrosion & Protection, 2024, 45(8): 22-27. DOI: 10.11973/fsyfh-202408004 |
In respond to the problems of high free corrosion rate, anodic polarization, and potential hysteresis when AZ31 magnesium alloy is used as the negative electrode in magnesium batteries, suitable corrosion inhibitors and their dosage are sought to adjust the electrolyte to improve the discharge performance of the battery. The corrosion inhibition effect of the corrosion inhibitor Li2CrO4 was characterized by corrosion immersion test. Then the effect of Li2CrO4 dosage in Mg(ClO4)2 solution on the electrochemical properties of AZ31 magnesium alloy was studied by polarization curve and electrochemical impedance spectroscopy. Finally, the water-based magnesium-manganese battery was assembled for constant-current discharge as an application-side test. The results show that Li2CrO4 made the corrosion potential of AZ31 magnesium alloy shift positively with a maximum of 150 mV, and could improve the discharge platform of magnesium battery in the application of aqueous Mg-Mn battery. When the mass fraction of Li2CrO4 was 0.7%, discharge platform could be increased by about 0.15 V. When the mass fraction of Li2CrO4 was 1.2%, the corrosion of AZ31 magnesium alloy could be significantly improved in Mg(ClO4)2 solution, the discharge capacity of the aqueous magnesium manganese battery was up to 196.9 mA·h, which increased by more about 64% in comparison with blank solution, and the operating voltage was up to 1.39 V with a stable discharge curve.
[1] |
武大鹏锂离子动力电池组全寿命周期均衡策略研究重庆重庆大学2019武大鹏. 锂离子动力电池组全寿命周期均衡策略研究[D]. 重庆: 重庆大学, 2019.
WU D PResearch on life cycle balance strategy of lithium-ion power batteryChongqingChongqing University2019WU D P. Research on life cycle balance strategy of lithium-ion power battery[D]. Chongqing: Chongqing University, 2019.
|
[2] |
ZHAO S Q, LI G M, HE W Z, et al. Recovery methods and regulation status of waste lithium-ion batteries in China: a mini review[J]. Waste Management & Research, 2019, 37(11):1142-1152.
|
[3] |
李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5):1551-1562.
LI S K, LIN Y, PAN F. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5):1551-1562.
|
[4] |
张海南, 罗旭东, 路金林, 等. 过渡金属硫化物镁离子电池正极材料研究进展[J]. 中国冶金, 2019, 29(9):1-8.
ZHANG H N, LUO X D, LU J L, et al. Research progress of transition metal sulfides as cathode materials for magnesium ion batteries[J]. China Metallurgy, 2019, 29(9):1-8.
|
[5] |
BEARD K W. Linden’s Handbook of Batteriesn[M]. 5th ed. [S.l.]: McGraw-Hill Education, 2019.
|
[6] |
SONG M J, WANG Y, SI C H, et al. Phase-boundary regulation boosting electrochemical reactivity of tin-based anodes for magnesium-ion batteries[J]. Science China Chemistry, 2022, 65(7):1433-1444.
|
[7] |
程毅, 潘复生, 朱伟. AZ镁合金用于干电池负极材料的电化学性能研究[J]. 功能材料, 2012, 43(2):264-267.
CHENG Y, PAN F S, ZHU W. Electrochemical properties of AZ alloys as anode material of magnesium dry batteries[J]. Journal of Functional Materials, 2012, 43(2):264-267.
|
[8] |
陈琳, 钟福荣, 昝金龙. 复合电解液中AZ31B镁合金的放电特性及电压滞后[J]. 中国腐蚀与防护学报, 2018, 38(2):197-202.
CHEN L, ZHONG F R, ZAN J L. Discharge property and voltage delay of AZ31B Mg alloy in Mg(NO3)2/Mg(ClO4)2 composite electrolyte[J]. Journal of Chinese Society for Corrosion and Protection, 2018, 38(2):197-202.
|
[9] |
GRGUR B N, JUGOVIĆ B Z, GVOZDENOVIĆ M M. Influence of chloride ion concentration on initial corrosion of AZ63 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(4):1133-1143.
|
[10] |
胡启明, 张娅, 沈钰, 等. 镁合金在Mg(ClO4)2溶液中腐蚀性能和放电性能研究[J]. 腐蚀科学与防护技术, 2015, 27(2):178-182.
HU Q M, ZHANG Y, SHEN Y, et al. Corrosion and discharge of magnesium alloy AZ31 in Mg(ClO4)2 solutions[J]. Corrosion Science and Protection Technology, 2015, 27(2):178-182.
|
[11] |
李亚琼, 马景灵, 王广欣, 等. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2019, 38(6):587-593.
LI Y Q, MA J L, WANG G X, et al. Effect of sodium phosphate and sodium dodecylbenzenesul-fonate on discharge performance of AZ31 magnesium air battery[J]. Journal of Chinese Society For Corrosion and Protection, 2019, 38(6):587-593.
|
[12] |
曾静, 武东政, 庄奕超, 等. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2):10-20.
ZENG J, WU D Z, ZHUANG Y C, et al. Research progress in strategies for improving performance of cathode materials for magnesium batteries[J]. Journal of Materials Engineering, 2021, 49(2):10-20.
|
[13] |
ZHAO Y C, HUANG G S, GONG G L, et al. Improving the intermittent discharge performance of Mg-air battery by using oxyanion corrosion inhibitor as electrolyte additive[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(11):1019-1024.
|
[14] |
ZHAO Y C, ZHANG C, WANG J K, et al. Influence of Li2CrO4 as additive for NaCl electrolyte on Mg-air battery discharge performances[J]. International Journal of Electrochemical Science, 2022, 17(2):220246.
|
[15] |
GUTSEV G L, JENA P, ZHAI H J, et al. Electronic structure of chromium oxides, CrOn-and CrOn (n=1-5) from photoelectron spectroscopy and density functional theory calculations[J]. The Journal of Chemical Physics, 2001, 115(17):7935-7944.
|
[16] |
梁成浩, 安晓雯. 溴化锂溶液中铬酸锂的应用研究 [J]. 制冷, 2000, 19(2):23-26.
LIANG C H, AN X W. Study on the application of Li2CrO4 in LiBr solution[J]. Refrigeration, 2000, 19(2):23-26.
|