Citation: | WANG Minghui, DANG Pengfei, YANG Zhengxin, GONG Bo. Corrosion Rate Prediction of Storage Tank Based on Particle Swarm Optimization and Least Squares Support Vector Machine[J]. Corrosion & Protection, 2024, 45(8): 71-76. DOI: 10.11973/fsyfh-202408011 |
A prediction method for corrosion rate of large storage tanks was proposed based on particle swarm optimization (PSO) algorithm and least squares support vector machine (LSSVM), which utilize the global optimization capability of PSO algorithm to optimize the regularization parameters and kernel parameters of LSSVM. The corrosion rates of storage tanks were predicted by the method, and the prediction accuracy of the model was verified by measured data. The results show that the predicted corrosion rates obtained using PSO-LSSVM were in good agreement with the actual corrosion rates. The mean absolute percentage errors of the predicted results of the tank top, the first tank wall and the tank bottom were 2.265%, 3.077% and 1.18%, the root mean square errors were 0.010%, 0.012% and 0.011%, and the corresponding coefficient of determination were 0.973, 0.982 and 0.976, respectively. So this method can effectively predict the corrosion rates of storage tanks.
[1] |
蒋林林, 李玲杰, 苏碧煌, 等. 声发射技术在储罐底板腐蚀检测中的应用[J]. 腐蚀与防护, 2021, 42(2):56-59,77.
JIANG L L, LI L J, SU B H, et al. Application of acoustic emission to corrosion detection of tank floor[J]. Corrosion & Protection, 2021, 42(2):56-59,77.
|
[2] |
穆大鹏, 樊建春, 姜健康, 等. 基于磁记忆检测的储罐罐壁典型缺陷信号研究[J]. 石油机械, 2021, 49(8):125-131.
MU D P, FAN J C, JIANG J K, et al. Study on typical defect signals of tank wall based on magnetic memory detection[J]. China Petroleum Machinery, 2021, 49(8):125-131.
|
[3] |
刘文才, 樊建春, 杨进. 采用超声导波的储罐罐顶腐蚀深度检测方法[J]. 光学精密工程, 2021, 29(6):1468-1481.
LIU W C, FAN J C, YANG J. Corrosion depth detection of tank top based on ultrasonic guided waves[J]. Optics and Precision Engineering, 2021, 29(6):1468-1481.
|
[4] |
朱吉新. 原油储罐底板腐蚀的原因及其防护措施[J]. 材料保护, 2009, 42(5):56-58.
ZHU J X. Causes leading to corrosion of the bottom plate of crude oil stock tank and measures for protection[J]. Materials Protection, 2009, 42(5):56-58.
|
[5] |
刘琪华, 张世杰. 基于GA-BP网络的声发射检测储罐底板腐蚀评价[J]. 电子技术应用, 2020, 46(1):76-80.
LIU Q H, ZHANG S J. Corrosion evaluation of tank floor based on acoustic emission detection based on GA-BP network[J]. Application of Electronic Technique, 2020, 46(1):76-80.
|
[6] |
张颖, 陈荣刚, 戴光, 等. 储罐底板腐蚀状况的贝叶斯判别预测方法[J]. 压力容器, 2010, 27(1):31-34.
ZHANG Y, CHEN R G, DAI G, et al. Research of Bayes discriminant analysis in prediction of tank bottom corrosion[J]. Pressure Vessel Technology, 2010, 27(1):31-34.
|
[7] |
刘雪云, 张宁宁, 赵光连, 等. 储油罐底腐蚀深度统计的极值理论应用[J]. 哈尔滨工业大学学报, 2013, 45(3):56-60.
LIU X Y, ZHANG N N, ZHAO G L, et al. Application of extreme value theory in the corrosion depth statistics of storage tank bottom[J]. Journal of Harbin Institute of Technology, 2013, 45(3):56-60.
|
[8] |
朱本廷, 吴明, 陈军. 基于灰色系统理论改进模型的储罐腐蚀速率预测[J]. 油气储运, 2010, 29(9):679-682.
ZHU B T, WU M, CHEN J. Corrosion rate prediction of tank based on modified grey system theory model[J]. Oil & Gas Storage and Transportation, 2010, 29(9):679-682.
|
[9] |
李烽. 基于LSSVM-RSM的边坡可靠度研究[J]. 水电能源科学, 2021, 39(9):165-168.
LI F. Study on reliability of slope stability based on LSSVM-RSM[J]. Water Resources and Power, 2021, 39(9):165-168.
|
[10] |
王东风, 李其贤, 黄宇, 等. 基于LSSVM的核电厂稳压器压力控制系统隐蔽攻击方法研究[J]. 核动力工程, 2022, 43(1):133-140.
WANG D F, LI Q, HUANG Y, et al. LSSVM based covert attack method research on pressure control system of pressurizer in nuclear power plant[J]. Nuclear Power Engineering, 2022, 43(1):133-140.
|
[11] |
于燕南, 戚其松, 董青, 等. 起重机载荷谱回归预测的LSSVM模型优化研究[J]. 振动与冲击, 2022, 41(12):215-228.
YU Y N, QI Q S, DONG Q, et al. A study on optimization of the LSSVM model for crane load spectrum regression prediction[J]. Journal of Vibration and Shock, 2022, 41(12):215-228.
|
[12] |
JIAN L, SHEN S Q, LI J D, et al. Budget online learning algorithm for least squares SVM[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(9):2076-2087.
|
[13] |
马钢, 李俊飞, 白瑞, 等. 基于PSO-SVM模型的油气管道内腐蚀速率预测[J]. 表面技术, 2019, 48(5):43-48.
MA G, LI J F, BAI R, et al. Prediction of corrosion rate in oil and gas pipelines based on PSO-SVM model[J]. Surface Technology, 2019, 48(5):43-48.
|
[14] |
王世东, 李立, 张游游, 等. 基于DE-PSO模型的土地资源优化配置研究[J]. 农业机械学报, 2022, 53(6):226-236.
WANG S D, LI L, ZHANG Y Y, et al. Optimal allocation of land resources based on DE-PSO model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6):226-236.
|
[15] |
李二超, 高振磊. 改进粒子速度和位置更新公式的粒子群优化算法[J]. 南京师大学报(自然科学版), 2022, 45(1):118-126.
LI E C, GAO Z L. Particle swarm optimization algorithm with improved particle velocity and position update formula[J]. Journal of Nanjing Normal University (Natural Science Edition), 2022, 45(1):118-126.
|
[16] |
徐培文, 陈仁祥, 胡小林, 等. PSO优化多尺度一维卷积神经网络的风机基础螺栓松动诊断[J]. 振动与冲击, 2022, 41(4):86-92.
XU P W, CHEN R X, HU X L, et al. PSO optimized multi-scale one-dimensional convolutional neural network for fan foundation bolt looseness diagnosis[J]. Journal of Vibration and Shock, 2022, 41(4):86-92.
|
[17] |
程岳梅, 李小波, 沈青. 基于IPSO-BP的地铁牵引逆变系统可靠性预测[J]. 计算机仿真, 2022, 39(2):78-82.
CHENG Y M, LI X B, SHEN Q. Reliability prediction of subway traction inverter system based on IPSO-BP[J]. Computer Simulation, 2022, 39(2):78-82.
|
[18] |
李世倩, 任罡, 胡晓丽, 等. 基于粒子群优化的变压器绕组热点温度模型研究[J]. 江苏科技大学学报(自然科学版), 2022, 36(1):98-104.
LI S Q, REN G, HU X L, et al. Research on hot spot temperature model of transformer winding based on PSO optimization[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2022, 36(1):98-104.
|
[19] |
骆正山, 秦越, 张新生, 等. 基于LASSO-WOA-LSSVM的海洋管线外腐蚀速率预测[J]. 表面技术, 2021, 50(5):245-252.
LUO Z S, QIN Y, ZHANG X S, et al. Prediction of external corrosion rate of marine pipelines based on LASSO-WOA-LSSVM[J]. Surface Technology, 2021, 50(5):245-252.
|
[20] |
郭海新. 基于GWO-LSSVM算法的LNG储罐腐蚀速率预测研究[J]. 能源化工, 2021, 42(4):61-67.
GUO H X. Corrosion rate prediction of LNG storage tank based on GWO-LSSVM algorithm[J]. Energy Chemical Industry, 2021, 42(4):61-67.
|