• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
Duan Bingquan, WANG Leilei, LI Haikun, HAN Changchai, LIU Zhenjun, LI Zhengmin, LIU Yong. Influence of Dynamic Current Fluctuation on Pipeline Corrosion Rate[J]. Corrosion & Protection, 2024, 45(11): 107-113. DOI: 10.11973/fsyfh220465
Citation: Duan Bingquan, WANG Leilei, LI Haikun, HAN Changchai, LIU Zhenjun, LI Zhengmin, LIU Yong. Influence of Dynamic Current Fluctuation on Pipeline Corrosion Rate[J]. Corrosion & Protection, 2024, 45(11): 107-113. DOI: 10.11973/fsyfh220465

Influence of Dynamic Current Fluctuation on Pipeline Corrosion Rate

More Information
  • Received Date: July 31, 2023
  • In order to evaluate the corrosion risk of dynamic DC stray current interference, test coupons for free corrosion and cathodic protection were buried along a pipeline. The free corrosion potentials, cathodic potentials (switch-on and switch-off potentials), corrosion rates of the test coupons and soil resistivity at the buried points were tested. The influence of current fluctuation on corrosion rate was investigated by comparing the correlation between corrosion rate and soil resistivity, as well as the correlation between corrosion rate and cathodic protection parameters. The results show that the measured corrosion rates were generally higher than the evaluation results based on soil resistivity. The corrosion rates were increased by dynamic stray current. A parameter of dynamic stray current fluctuation intensity If was defined. The influence of dynamic DC stray current fluctuation on the effectiveness of cathodic protection was about 0.06If. According to the polarization potential difference and If, the total equivalent corrosion current was calculated by Tafel formula. The Pearson correlation coefficient between the current and the measured corrosion rate was as high as 0.97. The sum of the polarization potential difference and 0.06If can be used to evaluate the effectiveness of the pipeline cathodic protection under dynamic DC stray current interference.

  • [1]
    刘瑶, 谭松玲, 邢琳琳, 等. 北京埋地燃气管道地铁杂散电流干扰影响现场检测及规律分析[J]. 腐蚀科学与防护技术, 2019, 31(4):429-435.

    LIU Y, TAN S L, XING L L, et al. Detection and analysis of interference with buried gas pipelines from subway stray current in Beijing area[J]. Corrosion Science and Protection Technology, 2019, 31(4):429-435.
    [2]
    孟庆思, 杜艳霞, 董亮, 等. 埋地管道地铁杂散电流干扰的测试技术[J]. 腐蚀与防护, 2016, 37(5):355-359,380.

    MENG Q S, DU Y X, DONG L, et al. A detecting technique of metro stray current interference on buried pipelines[J]. Corrosion & Protection, 2016, 37(5):355-359,380.
    [3]
    刘杰, 杜艳霞, 覃慧敏, 等. 地铁杂散电流对埋地管道的干扰规律[J]. 腐蚀与防护, 2019, 40(1):43-47,70.

    LIU J, DU Y X, QIN H M, et al. Interference regularity of metro stray current on buried pipelines[J]. Corrosion & Protection, 2019, 40(1):43-47,70.
    [4]
    李伟, 郭艳伟, 刘礼良, 等. 杂散电流干扰下埋地管道阴极保护有效性检测与评价[J]. 石油化工设备, 2021, 50(3):23-28.

    LI W, GUO Y W, LIU L L, et al. Detection and evaluation of the effectiveness of cathodic protection for buried pipelines interfered by stray currents[J]. Petro-Chemical Equipment, 2021, 50(3):23-28.
    [5]
    王禹桥, 黄玉坚, 彭成宽, 等. 基于地表电位梯度的地铁杂散电流动态干扰范围评估模型[J]. 北京交通大学学报, 2020, 44(3):30-36.

    WANG Y Q, HUANG Y J, PENG C K, et al. Evaluation model for dynamic interference of subway stray current based on surface potential gradient[J]. Journal of Beijing Jiaotong University, 2020, 44(3):30-36.
    [6]
    陈志光, 秦朝葵, 马飞. 轨道交通动态直流杂散电流检测及判定[J]. 煤气与热力, 2011, 31(10):35-39.

    CHEN Z G, QIN C K, MA F. Detection and judgment of dynamic direct stray current in track traffic[J]. Gas & Heat, 2011, 31(10):35-39.
    [7]
    李勃聪, 姜子涛, 杨军华, 等. 武汉燃气管道受城市轨道交通杂散电流干扰下的腐蚀速率分析[J]. 材料保护, 2021, 54(1):178-183.

    LI B C, JIANG Z T, YANG J H, et al. Analysis on corrosion rate of Wuhan buried gas pipelines under rail transit stray current interference[J]. Materials Protection, 2021, 54(1):178-183.
    [8]
    范锋, 庞洪晨, 王朋, 等. 青岛地铁13号线对某管道直流干扰及治理研究[J]. 天然气与石油, 2021, 39(3):82-87.

    FAN F, PANG H C, WANG P, et al. Research on interference to a pipeline in Qingdao caused by stray direct current from metro line 13 and the corresponding mitigation measures[J]. Natural Gas and Oil, 2021, 39(3):82-87.
    [9]
    颜达峰, 刘乃勇, 袁鹏斌, 等. 地铁维修基地杂散电流对埋地钢质管道的腐蚀及防护措施[J]. 腐蚀与防护, 2013, 34(8):739-742.

    YAN D F, LIU N Y, YUAN P B, et al. Corrsion of buried steel pipeline caused by stray current from subway maintenance base and protective countermeasures[J]. Corrosion & Protection, 2013, 34(8):739-742.
    [10]
    赵书华, 李晓, 王树立, 等. 埋地管道直流杂散电流腐蚀及防护的研究进展[J]. 材料保护, 2020, 53(5):123-128.

    ZHAO S H, LI X, WANG S L, et al. Research progress of corrosion and protection of DC stray current interference on buried pipelines[J]. Materials Protection, 2020, 53(5):123-128.
    [11]
    中华人民共和国住房和城乡建设部埋地钢质管道直流干扰防护技术标准:GB 50991-2014北京中国计划出版社2015中华人民共和国住房和城乡建设部. 埋地钢质管道直流干扰防护技术标准:GB 50991-2014[S]. 北京: 中国计划出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of ChinaTechnical standard for DC interference mitigation of buried steel pipeline: GB 50991-2014BeijingChina Planning Press2015Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for DC interference mitigation of buried steel pipeline: GB 50991-2014[S]. Beijing: China Planning Press, 2015.
    [12]
    Energy Safe VictoriaCathodic protection of metals part 1: pipes and cables: AS 2832.1-2015VictoriaStandards Australia20156Energy Safe Victoria. Cathodic protection of metals part 1: pipes and cables: AS 2832.1-2015[S]. Victoria: Standards Australia, 2015: 6.
    [13]
    Control of external corrosion on underground or submerged metallic piping systems: NACE SP0169-2013Houston, TXNACE International2013Control of external corrosion on underground or submerged metallic piping systems: NACE SP0169-2013[S]. Houston, TX: NACE International, 2013.
    [14]
    顾清林, 姜永涛, 曹国飞, 等. 关于长输天然气管道受地铁动态直流杂散电流干扰的思考与探讨[J]. 全面腐蚀控制, 2019, 33(6):1-5.

    GU Q L, JIANG Y T, CAO G F, et al. Insights on the interference of long-distance natural gas pipelines by dynamic DC stray current from subway systems[J]. Total Corrosion Control, 2019, 33(6):1-5.
    [15]
    THOMPSON N GDetermine the effectiveness of the -850 mV on-potential criterion for cathodic protectionFalls Church, VADNV2013THOMPSON N G. Determine the effectiveness of the -850 mV on-potential criterion for cathodic protection[R]. Falls Church, VA: DNV, 2013.
    [16]
    翁永基, 阎茂成, 李相怡. 断电法消除管道阴极保护电位IR降的研究[J]. 油气储运, 2002, 21(5):30-34,58-5.

    WENG Y J, YAN M C, LI X Y. Study on abilities of the current-cut-off method to eliminate IR drops inherent in cathodic protective potentials[J]. Oil & Gas Storage and Transportation, 2002, 21(5):30-34,58-5.
    [17]
    覃慧敏, 都业强, 吕超, 等. 埋地管道动态直流杂散电流干扰评估及防护技术的研究现状[J]. 腐蚀与防护, 2018, 39(6):409-417,424.

    QIN H M, DU Y Q, LÜ C, et al. Research status in assessment and protection techniques of dynamic DC stray current interference on buried pipelines[J]. Corrosion & Protection, 2018, 39(6):409-417,424.
    [18]
    许述剑, 翁永基, 李英义, 等. 阴极保护检查片评估西气东输苏浙沪管段的保护效果[J]. 中国石油大学学报(自然科学版), 2008, 32(3):122-127.

    XU S J, WENG Y J, LI Y Y, et al. Assessment of cathodic protection effectiveness for Su-Zhe-Hu section of west-east gas pipeline by coupon tests[J]. Journal of China University of Petroleum (Edition of Natural Science), 2008, 32(3):122-127.
    [19]
    王洪志, 周桐, 李博, 等. 地铁动态直流电流干扰下管道阴极保护有效性测试技术[J]. 石油化工腐蚀与防护, 2020, 37(1):42-44.

    WANG H Z, ZHOU T, LI B, et al. Effectiveness test of pipeline cathodic protection under metro dynamic DC interference[J]. Corrosion & Protection in Petrochemical Industry, 2020, 37(1):42-44.
    [20]
    翁永基, 明士涛, 李英义, 等. 利用检查片检测杂散干扰和评价埋地管道阴极保护效果[J]. 腐蚀科学与防护技术, 2011, 23(4):349-352.

    WENG Y J, MING S T, LI Y Y, et al. Detection of electric interference and evaluation of protective degree of applied cathodic protection for buried pipeline by coupon technology[J]. Corrosion Science and Protection Technology, 2011, 23(4):349-352.
    [21]
    朱祥剑, 杜艳霞, 覃慧敏, 等. 地铁杂散电流干扰下埋地管道管地电位动态波动规律[J]. 腐蚀与防护, 2019, 40(12):878-885.

    ZHU X J, DU Y X, QIN H M, et al. Dynamic fluctuation characteristics of pipe-to-soil potential on buried pipelines under interference of stray current from subway[J]. Corrosion & Protection, 2019, 40(12):878-885.
    [22]
    HAYDEN J L R. Alternating-current electrolysis[J]. Proceedings of the American Institute of Electrical Engineers, 1907, 26(2):103-131.
    [23]
    MCCOLLUM B, AHLBORN G H. The influence of frequency of alternating or infrequently reversed current on electrolytic corrosion[J]. Proceedings of the American Institute of Electrical Engineers, 1916, 35(3):371-397.

Catalog

    Article views (35) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return