• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
WANG Boyu, HUANG Xiaohui, WEI Feng, XI Minmin, ZHANG Jun, NIU Aijun, NIU Hui, WANG Lei. Research Progress of Carbon Dioxide Transport Characteristics and Corrosion Behavior of Transport Pipes[J]. Corrosion & Protection, 2025, 46(2): 108-115. DOI: 10.11973/fsyfh220766
Citation: WANG Boyu, HUANG Xiaohui, WEI Feng, XI Minmin, ZHANG Jun, NIU Aijun, NIU Hui, WANG Lei. Research Progress of Carbon Dioxide Transport Characteristics and Corrosion Behavior of Transport Pipes[J]. Corrosion & Protection, 2025, 46(2): 108-115. DOI: 10.11973/fsyfh220766

Research Progress of Carbon Dioxide Transport Characteristics and Corrosion Behavior of Transport Pipes

More Information
  • Received Date: December 23, 2022
  • Carbon capture, utilization and storage (CCUS) technology is the most effective and economical method to achieve China's dual carbon goals and mitigate global warming. The importance of CO2 pipeline transportation as an intermediate link between capture, storage, and utilization in terrestrial CCUS projects is self-evident. The current CO2 pipeline construction projects in China, the phase state of pure CO2, CO2 corrosion mechanism, supercritical CO2 transport pipes and their corrosion status are reviewed. The effects of impurities on the phase state, properties and corrosion mechanism of CO2 are collated. Finally, the urgent problems and research prospects in China in terms of CO2 transport characteristics and corrosion behavior of its transport pipes are presented.

  • [1]
    PIERRE F, MICHAEL O, JONES MATTHEW W, et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4): 3269-3340.
    [2]
    许毛, 张贤, 樊静丽, 等. 我国煤制氢与CCUS技术集成应用的现状、机遇与挑战[J]. 矿业科学学报, 2021, 6(6): 659-666.

    XU M, ZHANG X, FAN J L, et al. Status quo, opportunities and challenges of integrated application of coal-to-hydrogen and CCUS technology in China[J]. Journal of Mining Science and Technology, 2021, 6(6): 659-666.
    [3]
    孙旭东, 张蕾欣, 张博. 碳中和背景下我国煤炭行业的发展与转型研究[J]. 中国矿业, 2021, 30(2): 1-6.

    SUN X D, ZHANG L X, ZHANG B. Research on the coal industry development and transition in China under the background of carbon neutrality[J]. China Mining Magazine, 2021, 30(2): 1-6.
    [4]
    GOWRISANKAR A, PRIYANKA T M C, SAHA A, et al. Greenhouse gas emissions: a rapid submerge of the world[J]. Chaos, 2022, 32(6): 061104.
    [5]
    MORA C, SPIRANDELLI D, FRANKLIN E C, et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions[J]. Nature Climate Change, 2018, 8: 1062-1071.
    [6]
    MANZANAS R, TORRALBA V, LLEDÓ L, et al. On the reliability of global seasonal forecasts: sensitivity to ensemble size, hindcast length and region definition[J]. Geophysical Research Letters, 2022, 49(17): e2021GL094662.
    [7]
    胡永云. 气候系统和全球变暖--解读2021年诺贝尔物理奖[J]. 大学物理, 2022, 41(2): 1-6,57.

    HU Y Y. The climate system and global warming reading of the 2021 Nobel prize in physics[J]. College Physics, 2022, 41(2): 1-6,57.
    [8]
    史悦智. 以碳减排、回收利用模式提升现代煤化工发展的分析与探讨[J]. 煤化工, 2021, 49(5): 1-5.

    SHI Y Z. Analysis and discussion on promoting development of modern coal chemical industry by carbon emission reduction and recycling[J]. Coal Chemical Industry, 2021, 49(5): 1-5.
    [9]
    VISHAL V, CHANDRA D, SINGH U, et al. Understanding initial opportunities and key challenges for CCUS deployment in India at scale[J]. Resources, Conservation and Recycling, 2021, 175: 105829.
    [10]
    赵雪会, 黄伟, 李宏伟, 等. 促进“双碳”目标快速实现的CCUS技术研究现状及建议[J]. 石油管材与仪器, 2021, 7(6): 26-32.

    ZHAO X H, HUANG W, LI H W, et al. Research status and suggestions of CCUS technology to promote the rapid realization of “dual carbon” goal[J]. Petroleum Tubular Goods & Instruments, 2021, 7(6): 26-32.
    [11]
    陈兵, 徐梦林, 齐文娇. 基于CCUS的CO2管道延性断裂机理及止裂控制研究进展[J]. 焊管, 2022, 45(9): 1-10.

    CHEN B, XU M L, QI W J. Research progress on ductile fracture mechanism and crack arrest control of CO2 pipeline based on CCUS[J]. Welded Pipe and Tube, 2022, 45(9): 1-10.
    [12]
    SVENSSON R, ODENBERGER M, JOHNSSON F, et al. Transportation systems for CO2-application to carbon capture and storage[J]. Energy Conversion and Management, 2004, 45(15/16): 2343-2353.
    [13]
    HANDOGO R, MUALIM A, PURWO SUTIKNO J, et al. Evaluation of CO2 transport design via pipeline in the CCS system with various distance combinations[J]. ECS Transactions, 2022, 107(1): 8593-8608.
    [14]
    李俊, 张双蕾, 李亮, 等. 二氧化碳储存技术[J]. 天然气与石油, 2011, 29(2): 15-17.

    LI J, ZHANG S L, LI L, et al. Carbon dioxide storage technology[J]. Natural Gas and Oil, 2011, 29(2): 15-17.
    [15]
    向勇, 侯力, 杜猛, 等. 中国CCUS-EOR技术研究进展及发展前景[J]. 油气地质与采收率, 2023, 30(2): 1-17.

    XIANG Y, HOU L, DU M, et al. Research progress and development prospect of CCUS-EOR technologies in China[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 1-17.
    [16]
    陈兵, 巨熔冰, 白世星, 等. 含杂质超临界-密相CO2管道输送工艺参数优化[J]. 石油与天然气化工, 2018, 47(4): 101-106.

    CHEN B, JU R B, BAI S X, et al. Optimization of process parameters for supercritical-dense phase CO2 pipeline transportation with impurities[J]. Chemical Engineering of Oil & Gas, 2018, 47(4): 101-106.
    [17]
    TANG S, ZHU C Y, CUI G, et al. Analysis of internal corrosion of supercritical CO2 pipeline[J]. Corrosion Reviews, 2021, 39(3): 219-241.
    [18]
    陈思锭, 张哲, 王春燕, 等. 浅谈CCS/CCUS中CO2管道输送对气质的要求[J]. 油气与新能源, 2022, 34(2): 71-81.

    CHEN S D, ZHANG Z, WANG C Y, et al. Quality requirements for CO2 streams entering A pipeline transportation system in CCS/CCUS projects[J]. Petroleum and New Energy, 2022, 34(2): 71-81.
    [19]
    赵青, 李玉星. 杂质对管道输送CO2相特性的影响规律[J]. 油气储运, 2014, 33(7): 734-739,743.

    ZHAO Q, LI Y X. Impact of impurities on the phase behavior of CO2 in pipeline transportation[J]. Oil & Gas Storage and Transportation, 2014, 33(7): 734-739,743.
    [20]
    王全德长距离超临界CO2管道输送仿真应用研究西安西安石油大学20201320王全德. 长距离超临界CO2管道输送仿真应用研究[D]. 西安: 西安石油大学, 2020: 13-20.

    WANG Q DStudy on simulation application of long-distance supercritical CO2 pipeline transportationXi'anXi'an Shiyou University20201320WANG Q D. Study on simulation application of long-distance supercritical CO2 pipeline transportation[D]. Xi'an: Xi'an Shiyou University, 2020: 13-20.
    [21]
    SHIRLEY P, MYLES PQuality guidelines for energy system studies: CO2 impurity design parametersNational Energy Technology Laboratory2019SHIRLEY P, MYLES P. Quality guidelines for energy system studies: CO2 impurity design parameters[R].[S.l.]: National Energy Technology Laboratory, 2019.
    [22]
    CHOI Y S, NEŠIĆ S. Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 788-797.
    [23]
    DOOLEY J J, DAHOWSKI R T, DAVIDSON C L. Comparing existing pipeline networks with the potential scale of future U. S. CO2 pipeline networks[J]. Energy Procedia, 2009, 1(1): 1595-1602.
    [24]
    沈溃领面向碳捕获与封存(CCS)的超临界CO2输送管道腐蚀特性及机理研究重庆重庆科技学院20181沈溃领. 面向碳捕获与封存(CCS)的超临界CO2输送管道腐蚀特性及机理研究[D]. 重庆: 重庆科技学院, 2018: 1.

    SHEN K LStudy on corrosion characteristics and mechanism of supercritical CO2 pipeline for carbon capture and storage (CCS)ChongqingChongqing University of Science & Technology20181SHEN K L. Study on corrosion characteristics and mechanism of supercritical CO2 pipeline for carbon capture and storage (CCS)[D]. Chongqing: Chongqing University of Science & Technology, 2018: 1.
    [25]
    孙丽, 徐庆磊, 方炯, 等. CO2腐蚀与防护研究[J]. 焊管, 2009, 32(3): 23-26.

    SUN L, XU Q L, FANG J, et al. Research of the CO2 corrosion and its prevention[J]. Welded Pipe and Tube, 2009, 32(3): 23-26.
    [26]
    孙冲, 王勇, 孙建波, 等. 含杂质超临界CO2输送管线腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2015, 35(5): 379-385.

    SUN C, WANG Y, SUN J B, et al. Investigation progress on corrosion behavior of supercritical CO2 transmission pipelines containing impurities in CCS[J]. Journal of Chinese Society for Corrosion and Protection, 2015, 35(5): 379-385.
    [27]
    李春福, 王斌, 张颖, 等. 油气田开发中CO2腐蚀研究进展[J]. 西南石油学院学报, 2004, 26(2): 42-46,87.

    LI C F, WANG B, ZHANG Y, et al. Research progress of CO2 corrosion in oil/gas field exploitation[J]. Journal of Southwest Petroleum Institute, 2004, 26(2): 42-46,87.
    [28]
    魏亮钢在超临界CO2环境中腐蚀机制的研究北京北京科技大学20176魏亮. 钢在超临界CO2环境中腐蚀机制的研究[D]. 北京: 北京科技大学, 2017: 6.

    WEI LStudy on corrosion mechanism of steel in supercritical CO2BeijingUniversity of Science and Technology Beijing20176WEI L. Study on corrosion mechanism of steel in supercritical CO2 [D]. Beijing: University of Science and Technology Beijing, 2017: 6.
    [29]
    COLE I S, CORRIGAN P, SIM S, et al. Corrosion of pipelines used for CO2 transport in CCS: is it a real problem?[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 749-756.
    [30]
    HUA Y, BARKER R, NEVILLE A. Comparison of corrosion behaviour for X-65 carbon steel in supercritical CO2-saturated water and water-saturated/unsaturated supercritical CO2 [J]. The Journal of Supercritical Fluids, 2015, 97: 224-237.
    [31]
    TANG Y, GUO X P, ZHANG G A. Corrosion behaviour of X65 carbon steel in supercritical-CO2 containing H2O and O2 in carbon capture and storage (CCS) technology[J]. Corrosion Science, 2017, 118: 118-128.
    [32]
    HUA Y, BARKER R, NEVILLE A. The influence of SO2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical CO2 [J]. International Journal of Greenhouse Gas Control, 2015, 37: 412-423.
    [33]
    XIANG Y, WANG Z, XU C, et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 [J]. The Journal of Supercritical Fluids, 2011, 58(2): 286-294.
    [34]
    HUA Y, JONNALAGADDA R, ZHANG L, et al. Assessment of general and localized corrosion behavior of X65 and 13Cr steels in water-saturated supercritical CO2 environments with SO2/O2 [J]. International Journal of Greenhouse Gas Control, 2017, 64: 126-136.
    [35]
    WEI L, PANG X L, GAO K W. Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments[J]. Corrosion Science, 2016, 103: 132-144.
    [36]
    SUN C, SUN J B, WANG Y, et al. Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system[J]. Corrosion Science, 2016, 107: 193-203.
    [37]
    CUI G, YANG Z Q, LIU J G, et al. A comprehensive review of metal corrosion in a supercritical CO2 environment[J]. International Journal of Greenhouse Gas Control, 2019, 90: 102814.
    [38]
    HUA Y, SHAMSA A, BARKER R, et al. Protectiveness, morphology and composition of corrosion products formed on carbon steel in the presence of Cl-, Ca2+ and Mg2+ in high pressure CO2 environments[J]. Applied Surface Science, 2018, 455: 667-682.
    [39]
    ROSLI N R, CHOI Y S, YOUNG DImpact of oxygen ingress in CO2 corrosion of mild steelCorrosion 2014HoustonNACE International2014ROSLI N R, CHOI Y S, YOUNG D. Impact of oxygen ingress in CO2 corrosion of mild steel[C]//Corrosion 2014. Houston: NACE International, 2014.
    [40]
    WEI L, PANG X L, LIU C, et al. Formation mechanism and protective property of corrosion product scale on X70 steel under supercritical CO2 environment[J]. Corrosion Science, 2015, 100: 404-420.
    [41]
    JIANG X, QU D, SONG X L, et alImpact of water content on corrosion behavior of CO2 transportation pipelineCorrosion 2015HoustonNACE International2015JIANG X, QU D, SONG X L, et al. Impact of water content on corrosion behavior of CO2 transportation pipeline[C]//Corrosion 2015, Houston: NACE International, 2015.
    [42]
    GALE J, DAVISON J. Transmission of CO2-safety and economic considerations[J]. Energy, 2004, 29(9/10): 1319-1328.
    [43]
    XIANG Y, XU M H, CHOI Y S. State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: mechanisms and models[J]. Corrosion Engineering, Science and Technology, 2017, 52(7): 485-509.
    [44]
    赵国仙, 张思琦, 王映超, 等. N80钢在CO2、H2S及其混合介质环境中的腐蚀行为研究[J]. 焊管, 2022, 45(3): 7-12.

    ZHAO G X, ZHANG S Q, WANG Y C, et al. Study on corrosion behavior of N80 steel in CO2, H2S and mixed medium environment[J]. Welded Pipe and Tube, 2022, 45(3): 7-12.
    [45]
    李霄, 李磊磊, 黄晓辉, 等. L360钢在SRB/CO2环境中的腐蚀行为研究[J]. 焊管, 2022, 45(4): 8-12.

    LI X, LI L L, HUANG X H, et al. Corrosion behavior research of L360 steel in SRB/CO2 environment[J]. Welded Pipe and Tube, 2022, 45(4): 8-12.
    [46]
    郭克星, 赵红波, 李泽轩. CO2饱和介质中碳源对管线钢SRB腐蚀行为的影响[J]. 焊管, 2022, 45(2): 57-63.

    GUO K X, ZHAO H B, LI Z X. Effect of carbon source in CO2 saturated medium on SRB corrosion behavior of pipeline steel[J]. Welded Pipe and Tube, 2022, 45(2): 57-63.
    [47]
    王琳, 范玉然, 何金昆. 某输油管道腐蚀穿孔失效原因分析[J]. 焊管, 2022, 45(3): 50-56.

    WANG L, FAN Y R, HE J K. Corrosion perforation failure analysis of oil pipeline[J]. Welded Pipe and Tube, 2022, 45(3): 50-56.
    [48]
    SUN C, SUN J B, LIU S B, et al. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application[J]. Corrosion Science, 2018, 137: 151-162.
    [49]
    XU M H, ZHANG Q, YANG X X, et al. Impact of surface roughness and humidity on X70 steel corrosion in supercritical CO2 mixture with SO2, H2O, and O2 [J]. The Journal of Supercritical Fluids, 2016, 107: 286-297.
    [50]
    HUA Y, BARKER R, NEVILLE A. Understanding the influence of SO2 and O2 on the corrosion of carbon steel in water-saturated supercritical CO2 [J]. Corrosion, 2015, 71(5): 667-683.
    [51]
    SUN C, WANG Y, SUN J B, et al. Effect of impurity on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system[J]. The Journal of Supercritical Fluids, 2016, 116: 70-82.
    [52]
    XIANG Y, WANG Z, LI Z, et al. Effect of temperature on corrosion behaviour of X70 steel in high pressure CO2/SO2/O2/H2O environments[J]. Corrosion Engineering, Science and Technology, 2013, 48(2): 121-129.
    [53]
    WANG W H, SHEN K L, TANG S, et al. Synergistic effect of O2 and SO2 gas impurities on X70 steel corrosion in water-saturated supercritical CO2 [J]. Process Safety and Environmental Protection, 2019, 130: 57-66.
    [54]
    CHEN B, KANG Q H, JU R B. Calculation of electrochemical corrosion rate at elbow of supercritical CO2 pipeline[J]. IOP Conference Series: Materials Science and Engineering, 2020, 772(1): 012042.
    [55]
    XU M H, LI W H, ZHOU Y, et al. Effect of pressure on corrosion behavior of X60, X65, X70, and X80 carbon steels in water-unsaturated supercritical CO2 environments[J]. International Journal of Greenhouse Gas Control, 2016, 51: 357-368.

Catalog

    Article views (19) PDF downloads (22) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return