• 中国科技论文统计源期刊
  • 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • Scopus数据库全文收录期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
ZHANG Ning, DU Huayun, JIA Jianwen, HOU Lifeng, WEI Huan, ZHOU Yan, WEI Yinghui. High Temperature Corrosion Behavior and Mechanism of Austenitic Heat Resistant Steels in Sulfate Environment[J]. Corrosion & Protection, 2025, 46(2): 35-42. DOI: 10.11973/fsyfh230094
Citation: ZHANG Ning, DU Huayun, JIA Jianwen, HOU Lifeng, WEI Huan, ZHOU Yan, WEI Yinghui. High Temperature Corrosion Behavior and Mechanism of Austenitic Heat Resistant Steels in Sulfate Environment[J]. Corrosion & Protection, 2025, 46(2): 35-42. DOI: 10.11973/fsyfh230094

High Temperature Corrosion Behavior and Mechanism of Austenitic Heat Resistant Steels in Sulfate Environment

More Information
  • Received Date: February 20, 2023
  • The hot corrosion behavior of TP347HFG,316L and C-HRA-5 austenitic heat resistant steels in sulfate environment at 650,750,850 ℃ was studied. The hot corrosion mechanisms of three kinds of austenitic heat resistant steels in sulfate environment were investigated by corrosion kinetics curves and corrosion product composition and morphology analysis. The results show that the three kinds of austenitic heat resistant steels displayed an increase in mass after corrosion, with a declined order of 316L, TP347HFG, C-HRA-5. When the temperature was low, the protective oxide layer on the substrate surface underwent corrosion and dissolution under the mechanism of “synergistic melting”. When the temperature was high, the oxide layer underwent severe corrosion under the dual mechanism of “synergistic melting” and “alkaline melting”. The austenitic steels had good corrosion resistance because of high content of Cr and Ni, and the addition of Cu element improved the high temperature corrosion resistance of austenitic steel to a certain extent.

  • [1]
    VISWANATHAN R, BAKKER W. Materials for ultrasupercritical coal power plants-boiler materials: part 1[J]. Journal of Materials Engineering and Performance, 2001, 10(1): 81-95.
    [2]
    唐飞, 董斌, 赵敏. 超超临界机组在我国的发展及应用[J]. 电力建设, 2010, 31(1): 80-82.

    TANG F, DONG B, ZHAO M. USC unit development and application in China[J]. Electric Power Construction, 2010, 31(1): 80-82.
    [3]
    周荣灿, 范长信. 超超临界火电机组材料研究及选材分析[J]. 中国电力, 2005, 38(8): 41-47.

    ZHOU R C, FAN C X. Review of material research and material selection for ultra-supercritical power plants[J]. Electric Power, 2005, 38(8): 41-47.
    [4]
    ZHOU Y H, LIU Y C, ZHOU X S, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: a review[J]. Journal of Materials Science & Technology, 2017, 33(12): 1448-1456.
    [5]
    伊璞, 侯利锋, 杜华云, 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.

    YI P, HOU L F, DU H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(2): 288-294.
    [6]
    周慧云, 洪嘉, 黄健航, 等. 超临界锅炉用材料的高温腐蚀研究进展[J]. 表面技术, 2016, 45(11): 145-152.

    ZHOU H Y, HONG J, HUANG J H, et al. Research progress on the high temperature corrosion of supercritical boiler materials[J]. Surface Technology, 2016, 45(11): 145-152.
    [7]
    HU S S, FINKLEA H, LIU X B. A review on molten sulfate salts induced hot corrosion[J]. Journal of Materials Science & Technology, 2021, 90: 243-254.
    [8]
    RUTKOWSKI B, GIL A, CZYRSKA-FILEMONOWICZ A. Microstructure and chemical composition of the oxide scale formed on the sanicro 25 steel tubes after fireside corrosion[J]. Corrosion Science, 2016, 102: 373-383.
    [9]
    MA H, WANG Y, LIANG Z, et al. Investigation on high temperature corrosion characteristic of Super304H, TP347H, and HR3C steel in an ultra-supercritical coal-fired boiler[J]. Fuel Cells, 2021, 21(1): 24-30.
    [10]
    YU W X, CHU X, ZHANG H H, et al. An experimental study on high temperature corrosion of TP347H stainless steel in molten chloride and sulfate[J]. Journal of Physics: Conference Series, 2021: 012064.
    [11]
    刘光明, 刘康生, 毛晓飞, 等. T91钢在KCl+Na2SO4+K2SO4熔融盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 23-28.

    LIU G M, LIU K S, MAO X F, et al. Hot corrosion of T91 steel in molten mixture of KCl+Na2SO4+K2SO4 [J]. Journal of Chinese Society for Corrosion and Protection, 2017, 37(1): 23-28.
    [12]
    李萍, 李安娜, 庞胜娇, 等. Super304H抗碱金属硫酸盐的腐蚀行为[J]. 材料工程, 2015, 43(1): 54-58.

    LI P, LI A N, PANG S J, et al. Corrosion behavior of super 304H with alkali resistance metal sulfate[J]. Journal of Materials Engineering, 2015, 43(1): 54-58.
    [13]
    韩瑞珠, 贾建文, 李阳, 等. 超级奥氏体不锈钢的热腐蚀行为及机理研究[J]. 中国腐蚀与防护学报, 2023(2): 421-427.

    HAN R Z, JIA J W, LI Y, et al. Corrosion behavior of three super austenitic stainless steels in a molten salts mixture at 650-750 ℃[J]. Journal of Chinese Society for Corrosion and Protection, 2023(2): 421-427.
    [14]
    官宇, 刘光明, 张民强, 等. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.

    GUAN Y, LIU G M, ZHANG M Q, et al. High temperature corrosion behavior of sanicro 25 steel in high-sulfur coal ash/simulated flue gas[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(4): 681-686.
    [15]
    KIM J H, KIM D I, SHIM J H, et al. Investigation into the high temperature oxidation of Cu-bearing austenitic stainless steel using simultaneous electron backscatter diffraction-energy dispersive spectroscopy analysis[J]. Corrosion Science, 2013, 77: 397-402.
    [16]
    DOUGLASS D L, KOFSTAD P, RAHMEL P, et al. International workshop on high-temperature corrosion[J]. Oxidation of Metals, 1996, 45(5): 529-620.
    [17]
    LIU Z H, NING Z Y, ZHOU Q L, et al. Effects of external stress on high-temperature corrosion behavior of T92 ferrite steel with Na2SO4-K2SO4 molten salts[J]. Oxidation of Metals, 2022, 97(1): 141-155.
    [18]
    WANG R M, DUAN M G, ZHANG J, et al. Microstructure characteristics and their effects on the mechanical properties of as-served HR3C heat-resistant steel[J]. Journal of Materials Engineering and Performance, 2021, 30(6): 4552-4561.
    [19]
    SALEHI DOOLABI M, GHASEMI B, SADRNEZHAAD S K, et al. Hot corrosion behavior and near-surface microstructure of a “low-temperature high-activity Cr-aluminide” coating on inconel 738LC exposed to Na2SO4, Na2SO4 +V2O5 and Na2SO4 +V2O5 +NaCl at 900 ℃[J]. Corrosion Science, 2017, 128: 42-53.
    [20]
    SYED A U, HUSSAIN T, SIMMS N J, et al. Microscopy of fireside corrosion on superheater materials for oxy-fired pulverised fuel power plants[J]. Materials at High Temperatures, 2012, 29(3): 219-228.
    [21]
    白银, 刘正东, 谢建新, 等. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018, 54(6): 895-904.

    BAI Y, LIU Z D, XIE J X, et al. Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel[J]. Acta Metallurgica Sinica, 2018, 54(6): 895-904.
    [22]
    LI P, LI T J, ZHAO J, et al. Hot corrosion behaviors of Super 304H austenitic stainless steelpre-coated in Na2SO4-25%NaCl mixture salt film[J]. Journal of Iron and Steel Research International, 2018, 25(11): 1149-1155.
    [23]
    FU J P, ZHOU Q L, LI N, et al. Effects of external stresses on hot corrosion behavior of stainless steel TP347HFG[J]. Corrosion Science, 2016, 104: 103-111.

Catalog

    Article views (25) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return