• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
LIN Yinglian, LUAN Yonggang, LI Dapeng, CHANG Wei, LI Huixin, ZHU Zhenhong, LIANG Yi, DU Yanxia. Anomalous Depletion Reasons of Sacrificial Anodes on Deepwater Submarine Pipelines[J]. Corrosion & Protection, 2024, 45(10): 122-129. DOI: 10.11973/fsyfh230119
Citation: LIN Yinglian, LUAN Yonggang, LI Dapeng, CHANG Wei, LI Huixin, ZHU Zhenhong, LIANG Yi, DU Yanxia. Anomalous Depletion Reasons of Sacrificial Anodes on Deepwater Submarine Pipelines[J]. Corrosion & Protection, 2024, 45(10): 122-129. DOI: 10.11973/fsyfh230119

Anomalous Depletion Reasons of Sacrificial Anodes on Deepwater Submarine Pipelines

More Information
  • Received Date: March 05, 2023
  • In recent years, there has been an accelerated consumption of sacrificial anodes in the eastern waters of the South China Sea, posing a risk of failure for deepwater cathodic protection systems. In order to investigate the reasons for abnormal consumption of sacrificial anodes in submarine pipelines, design data research and indoor evaluation tests were carried out. The indoor evaluation tests included the demand test for protective current density of pipeline steel, the electrochemical performance evaluation test of anodes, and the indoor scaling test of the electrical connection between submarine pipelines and underwater systems. The focus was on exploring the influence of temperature and the electrical connection between submarine pipelines and underwater structures on sacrificial anode consumption. The results indicate that temperature was not the main factor causing abnormal anode consumption in submarine pipelines, but when the pipeline was electrically connected to underwater structures with poor cathodic protection, the output current of the sacrificial anode near the underwater structure increased, and the service life of the anode would be significantly reduced. This was the main reason for the accelerated consumption of sacrificial anodes.

  • [1]
    张林, 杜敏, 陈如林, 等. 低温低溶解氧海水环境中X70钢阴极极化行为研究 [J]. 腐蚀科学与防护技术, 2012, 24(2):101-106.

    ZHANG L, DU M, CHEN R L, et al. Cathodic polarization behavior of X70 steel in low temperature and low dissolved oxygen seawater [J]. Corrosion Science and Protection Technology, 2012, 24(2):101-106.
    [2]
    DONG C, LUO H, XIAO K, et al. Effect of temperature and Cl- concentration on pitting of 2205 duplex stainless steel [J]. Journal of Wuhan University of Technology(Materials Science Edition), 2011, 26(4):641-647.
    [3]
    ZHANG Y, WANG J Z, YIN X Y, et al. Tribocorrosion behaviour of 304 stainless steel in different corrosive solutions [J]. Materials and Corrosion, 2016, 67(7):769-777.
    [4]
    LORENZI S, PASTORE T, BELLEZZE T, et al. Cathodic protection modelling of a propeller shaft [J]. Corrosion Science, 2016, 108:36-46.
    [5]
    徐宏妍, 李延斌. 铝基牺牲阳极在海水中的活化行为 [J]. 中国腐蚀与防护学报, 2008, 28(3):186-192.

    XU H Y, LI Y B. Activation behavior of aluminum sacrificial anodes in sea water [J]. Journal of Chinese Society for Corrosion and Protection, 2008, 28(3):186-192.
    [6]
    国家质量监督检验检疫总局, 中国国家标准化管理委员会石油天然气工业海底管道阴极保护:GB/T 35988-2018北京中国标准出版社2018国家质量监督检验检疫总局, 中国国家标准化管理委员会. 石油天然气工业海底管道阴极保护:GB/T 35988-2018[S]. 北京: 中国标准出版社, 2018.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of ChinaCathodic protection of offshore pipeline in petroleum, natural gas industries: GB/T 35988—2018BeijingStandards Press of China2018General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Cathodic protection of offshore pipeline in petroleum, natural gas industries: GB/T 35988—2018[S]. Beijing: Standards Press of China, 2018.
    [7]
    Petroleum, petrochemical and natural gas industries - Cathodic protection of pipeline transportation systems - Part 2: Offshore pipelines: ISO 15589-2ISO2012Petroleum, petrochemical and natural gas industries - Cathodic protection of pipeline transportation systems - Part 2: Offshore pipelines: ISO 15589-2[S]. ISO, 2012.
    [8]
    Cathodic protection of submarine pipelines: DNVGL-RP-F103DNVGL2019Cathodic protection of submarine pipelines: DNVGL-RP-F103[S]. DNVGL, 2019.
    [9]
    Cathodic Protection Design: DNV-RP-B401DNVGL1993Cathodic Protection Design: DNV-RP-B401[S]. DNVGL, 1993.
    [10]
    国家能源局海上钢质固定石油生产构筑物的腐蚀控制:SY/T 10008—2010北京石油工业出版社2010国家能源局. 海上钢质固定石油生产构筑物的腐蚀控制:SY/T 10008—2010[S]. 北京: 石油工业出版社, 2010.

    National Energy Bureau of the People's Republic of ChinaCorrosion control of steel fixed offshore structures associated with petroleum production: SY/T 10008—2010BeijingPetroleum Industry Press2010National Energy Bureau of the People's Republic of China. Corrosion control of steel fixed offshore structures associated with petroleum production: SY/T 10008—2010[S]. Beijing: Petroleum Industry Press, 2010.
    [11]
    李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33(1):10-16.

    LI C J, DU M. Research and development of cathodic protection for steels in deep seawater [J]. Journal of Chinese Society for Corrosion and Protection, 2013, 33(1):10-16.
    [12]
    CANEPA E, STIFANESE R, MEROTTO L, et al. Corrosion behaviour of aluminium alloys in deep-sea environment: a review and the KM3NeT test results [J]. Marine Structures, 2018, 59:271-284.
    [13]
    FISCHER K, SYDBERGER T, LYE R. Field testing of deep water cathodic protection on the Norwegian Continental Shelf [J]. Materials Performance, 1988, 27:49-56.
    [14]
    TRAVERSO P, CANEPA E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Engineering, 2014, 87:10-15.
    [15]
    SUN H J, LIU L, LI Y, et al. The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment [J]. Corrosion Science, 2013, 77:77-87.
    [16]
    LI W L, YAN Y G, CHEN G, et al. The effect of temperature and dissolved oxygen concentration on the electrochemical behavior of Al-Zn-Inbased anodes [J]. Procedia Engineering, 2011, 12:27-34.
    [17]
    曾刚勇, 韩兴平. 输气管道阴极保护电绝缘装置失效检测与预防——以中国石油西南油气田公司金山输气站绝缘装置为例 [J]. 天然气工业, 2012, 32(2):103-105,123-124.

    ZENG G Y, HAN X P. Inspection and countermeasures for the failures of electrical insulation device by cathodic protection: a case study in the Jinshan gas transmission station operated by the PetroChina Southwest Company [J]. Natural Gas Industry, 2012, 32(2):103-105,123-124.
    [18]
    BRITTON JDeepwater corrosion design bloopersCorrosion 2004New OrleansNACE2004BRITTON J. Deepwater corrosion design bloopers [C]//Corrosion 2004. New Orleans: NACE, 2004.
    [19]
    孙海礁, 葛宝玉, 刘强, 等. 牺牲阳极对20号管线钢内腐蚀的阴极保护效果及影响因素 [J]. 腐蚀与防护, 2022, 43(1):24-30,43.

    SUN H J, GE B Y, LIU Q, et al. Cathodic protection effect of sacrificial anode on internal corrosion of 20 pipeline steel and its influencing factors [J]. Corrosion & Protection, 2022, 43(1):24-30,43.
    [20]
    张玉星, 邸鑫, 郭保玲, 等. 基于防腐层电阻率的埋地管道防腐层退化规律 [J]. 煤气与热力, 2021, 41(3):77-81,100.

    ZHANG Y X, DI X, GUO B L, et al. Degradation law of anticorrosive coating of buried pipeline based on resistivity of anticorrosive coating [J]. Gas & Heat, 2021, 41(3):77-81,100.

Catalog

    Article views (36) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return