• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
JIA Xuefeng. Hydrogen Embrittlement Behavior of Mixed Hydrogen Natural Gas Pipeline Steel: A review[J]. Corrosion & Protection, 2024, 45(10): 88-96. DOI: 10.11973/fsyfh240036
Citation: JIA Xuefeng. Hydrogen Embrittlement Behavior of Mixed Hydrogen Natural Gas Pipeline Steel: A review[J]. Corrosion & Protection, 2024, 45(10): 88-96. DOI: 10.11973/fsyfh240036

Hydrogen Embrittlement Behavior of Mixed Hydrogen Natural Gas Pipeline Steel: A review

More Information
  • Received Date: January 24, 2024
  • The economical and efficient of using existing current natural gas pipelines for hydrogen transportation has garnered domestic and foreign researchers in recent years. However, the problem of hydrogen embrittlement in pipeline steel caused by hydrogen poses a great challenge to the long-term safe operation of pipelines, and research on the hydrogen embrittlement behavior of pipeline steel for hydrogen doped natural gas transportation is urgently needed. The research progresses on the mechanism of metal hydrogen embrittlement were reviewed and the current research status on the changes in mechanical properties of pipeline steel under hydrogen/hydrogen doped natural gas environments were summarized in this article. In addition, common methods for suppressing hydrogen embrittlement behavior in pipeline steel were introduced, and the reference for effective solutions to hydrogen embrittlement problems were provided to ensure the safe operation of natural gas transmission pipelines.

  • [1]
    APREA J L, BOLCICH J C. The energy transition towards hydrogen utilization for green life and sustainable human development in Patagonia [J]. International Journal of Hydrogen Energy, 2020, 45(47):25627-25645.
    [2]
    任若轩, 游双矫, 朱新宇, 等. 天然气掺氢输送技术发展现状及前景 [J]. 油气与新能源, 2021, 33(4):26-32.

    REN R X, YOU S J, ZHU X Y, et al. Development status and prospects of hydrogen compressed natural gas transportation technology [J]. Petroleum And New Energy, 2021, 33(4):26-32.
    [3]
    SHANG J, CHEN W F, ZHENG J Y, et al. Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures [J]. Scripta Materialia, 2020, 189:67-71.
    [4]
    李凤, 董绍华, 陈林, 等. 掺氢天然气长距离管道输送安全关键技术与进展 [J]. 力学与实践, 2023, 45(2):230-244.

    LI F, DONG S H, CHEN L, et al. Key safety technologies and advances in long-distance pipeline transportation of hydrogen blended natural gas [J]. Mechanics in Engineering, 2023, 45(2):230-244.
    [5]
    陈林, 董绍华, 李凤, 等. 氢环境下压力容器及管道材料相容性研究进展 [J]. 力学与实践, 2022, 44(3):503-518.

    CHEN L, DONG S H, LI F, et al. Some advances in studies of material compatibility of pressure vessels and pipelines in hydrogen atmosphere [J]. Mechanics in Engineering, 2022, 44(3):503-518.
    [6]
    邢云颖, 赵茜, 王修云, 等. 掺氢天然气输送管道材料适用性的测试方法 [J]. 腐蚀与防护, 2023, 44(9):51-56,106.

    XING Y Y, ZHAO Q, WANG X Y, et al. Test method for suitability of hydrogen-doped natural gas transport pipeline materials [J]. Corrosion & Protection, 2023, 44(9):51-56,106.
    [7]
    孔莹莹, 崔继彤, 韩辉, 等. 国内外氢气管道输送技术标准对比与探讨 [J]. 油气储运, 2023, 42(8):944-951.

    KONG Y Y, CUI J T, HAN H, et al. Comparative analysis and discussion on domestic and foreign technical standards for hydrogen pipeline transportation [J]. Oil & Gas Storage and Transportation, 2023, 42(8):944-951.
    [8]
    张烘玮, 赵杰, 李敬法, 等. 天然气掺氢输送环境下的腐蚀与氢脆研究进展 [J]. 天然气工业, 2023, 43(6):126-138.

    ZHANG H W, ZHAO J, LI J F, et al. Research progress on corrosion and hydrogen embrittlement in hydrogen-natural gas pipeline transportation [J]. Natural Gas Industry, 2023, 43(6):126-138.
    [9]
    NAGUMO M, TAKAI K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview [J]. Acta Materialia, 2019, 165:722-733.
    [10]
    程玉峰. 高压氢气管道氢脆问题明晰 [J]. 油气储运, 2023, 42(1):1-8.

    CHENG Y F. Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments [J]. Oil & Gas Storage and Transportation, 2023, 42(1):1-8.
    [11]
    LI H Y, NIU R M, LI W, et al. Hydrogen in pipeline steels: recent advances in characterization and embrittlement mitigation [J]. Journal of Natural Gas Science and Engineering, 2022, 105:104709.
    [12]
    DJUKIC M B, BAKIC G M, SIJACKI ZERAVCIC V, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion [J]. Engineering Fracture Mechanics, 2019, 216:106528.
    [13]
    ZHANG T M, ZHAO W M, LI T T, et al. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation [J]. Corrosion Science, 2018, 131:104-115.
    [14]
    NGUYEN T T, TAK N, PARK J, et al. Hydrogen embrittlement susceptibility of X70 pipeline steel weld under a low partial hydrogen environment [J]. International Journal of Hydrogen Energy, 2020, 45(43):23739-23753.
    [15]
    SHANG J, WANG J Z, CHEN W F, et al. Different effects of pure hydrogen vs. hydrogen/natural gas mixture on fracture toughness degradation of two carbon steels [J]. Materials Letters, 2021, 296:129924.
    [16]
    CHEN K, ZHAO W, XIAO G C, et al. Corrosion characteristics of simulated reheated heat-affected-zone of X80 pipeline steel in carbonate/bicarbonate solution [J]. Corrosion Science, 2023, 210:110856.
    [17]
    CHEN K, ZHAO W, XIAO G C, et al. Study on corrosion resistance and hydrogen permeation behavior in inter-critically reheated coarse-grained heat-affected zone of X80 pipeline steel [J]. Metals, 2022, 12(7):1203.
    [18]
    NGUYEN T T, PARK J, KIM W S, et al. Effect of low partial hydrogen in a mixture with methane on the mechanical properties of X70 pipeline steel [J]. International Journal of Hydrogen Energy, 2020, 45(3):2368-2381.
    [19]
    MENG B, GU C H, ZHANG L, et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures [J]. International Journal of Hydrogen Energy, 2017, 42(11):7404-7412.
    [20]
    ZHANG S, AN T, ZHENG S Q, et al. The effects of double notches on the mechanical properties of a high-strength pipeline steel under hydrogen atmosphere [J]. International Journal of Hydrogen Energy, 2020, 45(43):23134-23141.
    [21]
    NGUYEN T T, HEO H M, PARK J, et al. Fracture properties and fatigue life assessment of API X70 pipeline steel under the effect of an environment containing hydrogen [J]. Journal of Mechanical Science and Technology, 2021, 35(4):1445-1455.
    [22]
    AN T, PENG H T, BAI P P, et al. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel [J]. International Journal of Hydrogen Energy, 2017, 42(23):15669-15678.
    [23]
    AN T, ZHANG S, FENG M, et al. Synergistic action of hydrogen gas and weld defects on fracture toughness of X80 pipeline steel [J]. International Journal of Fatigue, 2019, 120:23-32.
    [24]
    ZHANG S, LI J, AN T, et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in situ hydrogen permeation [J]. International Journal of Hydrogen Energy, 2021, 46(39):20621-20629.
    [25]
    ZHUO J X, ZHANG C, ZHANG S, et al. Influence of hydrogen environment on fatigue fracture morphology of X80 pipeline steel [J]. Journal of Materials Research and Technology, 2023, 22:1039-1047.
    [26]
    NOVAK P, YUAN R, SOMERDAY B P, et al. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel [J]. Journal of the Mechanics and Physics of Solids, 2010, 58(2):206-226.
    [27]
    WANG D, LU X, DENG Y, et al. Effect of hydrogen on nanomechanical properties in Fe-22Mn-0.6C TWIP steel revealed by in situ electrochemical nanoindentation [J]. Acta Materialia, 2019, 166:618-629.
    [28]
    CHEN Y S, LU H Z, LIANG J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367(6474):171-175.
    [29]
    GONG P, NUTTER J, RIVERA-DIAZ-DEL-CASTILLO P E J, et al. Hydrogen embrittlement through the formation of low-energy dislocation nanostructures in nanoprecipitation-strengthened steels [J]. Science Advances, 2020, 6(46):eabb6152.
    [30]
    AN T, ZHENG S Q, PENG H T, et al. Synergistic action of hydrogen and stress concentration on the fatigue properties of X80 pipeline steel [J]. Materials Science and Engineering: A, 2017, 700:321-330.
    [31]
    NEERAJ T, SRINIVASAN R, LI J. Hydrogen embrittlement of ferritic steels: observations on deformation microstructure, nanoscale dimples and failure by nanovoiding [J]. Acta Materialia, 2012, 60(13/14):5160-5171.
    [32]
    DWIVEDI S K, VISHWAKARMA M. Hydrogen embrittlement in different materials: a review [J]. International Journal of Hydrogen Energy, 2018, 43(46):21603-21616.
    [33]
    LYNCH S. Hydrogen embrittlement phenomena and mechanisms [J]. Corrosion Reviews. 2012, 30:3-4.
    [34]
    ROBERTSON I M, SOFRONIS P, NAGAO A, et al. Hydrogen embrittlement Understood [J]. Metallurgical and Materials Transactions A. 2015, 46(6):2323-2341.
    [35]
    安腾氢气环境X80管线钢疲劳损伤行为研究北京中国石油大学(北京)2018安腾. 氢气环境X80管线钢疲劳损伤行为研究 [D]. 北京: 中国石油大学(北京), 2018.

    AN TStudy on fatigue damage behavior of X80 pipeline steel in hydrogen environmentBeijingChina University of Petroleum (Beijing)2018AN T. Study on fatigue damage behavior of X80 pipeline steel in hydrogen environment [D]. Beijing: China University of Petroleum (Beijing), 2018.
    [36]
    MUSTAPHA A, CHARLES E A, HARDIE D. Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel [J]. Corrosion Science. 2012, 54:5-9.
    [37]
    NANNINGA N E, LEVY Y S, DREXLER E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments [J]. Corrosion Science. 2012, 59:1-9.
    [38]
    李玉星, 张睿, 刘翠伟, 等. 掺氢天然气管道典型管线钢氢脆行为 [J]. 油气储运. 2022, 41(6):732-742.

    LI Y X, ZHANG R, LIU C W, et al. Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel [J]. Oil & Gas Storage and Transportation, 2022, 41(6):732-742.
    [39]
    刘方, 杨宏伟, 邓付洁. 掺氢天然气输送用X65管线钢的氢脆行为 [J]. 油气储运. 2023:1-8.

    LIU F, YANG H W, DENG F J. Research on hydrogen embrittlement behavior of X52 pipeline steel for hydrogen doped natural gas transportation [J]. Petroleum and New Energy, 2024(3):30-35,59.
    [40]
    NGUYEN T T, BAE K, JAEYEONG P, et al. Damage associated with interactions between microstructural characteristics and hydrogen/methane gas mixtures of pipeline steels [J]. International Journal of Hydrogen Energy. 2022, 47(73):31499-31520.
    [41]
    BRIOTTET L, BATISSE R, de DINECHIN G, et al. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines [J]. International Journal of Hydrogen Energy. 2012, 37(11):9423-9430.
    [42]
    AMARO R L, DREXLER E S, SLIFKA A J. Fatigue crack growth modeling of pipeline steels in high pressure gaseous hydrogen [J]. International Journal of Fatigue. 2014, 62:249-257.
    [43]
    关鸿鹏, 林振娴, 李瑜仙, 等. X70管线钢及焊缝在模拟煤制气含氢环境下的氢脆敏感性 [J]. 工程科学学报. 2017, 39(04):535-541.

    GUAN H P, LIN Z X, LI Y X, et al. Hydrogen embrittlement susceptibility of the X70 pipeline steel substrate and weld in simulated coal gas containing hydrogen environment [J]. Chinese Journal of Engineering, 2017, 39(4):535-541.
    [44]
    李天雷, 冯敏, 梁爽, 等. X70管线钢管环焊接头氢脆敏感性研究 [J]. 焊管. 2023, 46(5):16-22.

    LI T L, FENG M, LIANG S, et al. Study on hydrogen embrittlement susceptibility of X70 pipeline steel pipe girth welded joints [J]. Welded Pipe and Tube, 2023, 46(5):16-22.
    [45]
    ALVARO A, OLDEN V, MACADRE A, et al. Hydrogen embrittlement susceptibility of a weld simulated X70 heat affected zone under H2 pressure [J]. Materials Science and Engineering: A. 2014, 597:29-36.
    [46]
    SHANG J, ZHENG J, HUA Z, et al. Effects of stress concentration on the mechanical properties of X70 in high-pressure hydrogen-containing gas mixtures [J]. International Journal of Hydrogen Energy. 2020, 45(52):28204-28215.
    [47]
    WANG C, ZHANG J, LIU C, et al. Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests [J]. International Journal of Hydrogen Energy. 2023, 48(1):243-256.
    [48]
    ZHOU D, LI T, HUANG D, et al. The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel [J]. International Journal of Hydrogen Energy. 2021, 46(10):7402-7414.
    [49]
    BRIOTTET L, MORO I, LEMOINE P. Quantifying the hydrogen embrittlement of pipeline steels for safety considerations [J]. International Journal of Hydrogen Energy. 2012, 37(22):17616-17623.
    [50]
    MORO I, BRIOTTET L, LEMOINE P, et al. Hydrogen embrittlement susceptibility of a high strength steel X80 [J]. Materials Science and Engineering: A, 2010, 527(27/28):7252-7260.
    [51]
    RONEVICH J A, SONG E J, SOMERDAY B P, et al. Hydrogen-assisted fracture resistance of pipeline welds in gaseous hydrogen [J]. International Journal of Hydrogen Energy, 2021, 46(10):7601-7614.
    [52]
    SOMERDAY B P, SOFRONIS P, NIBUR K A, et al. Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations [J]. Acta Materialia. 2013, 61(16):6153-6170.
    [53]
    SLIFKA A J, DREXLER E S, NANNINGA N E, et al. Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment [J]. Corrosion Science. 2014, 78:313-321.
    [54]
    史昊, 邢云颖, 王修云, 等. 煤制合成天然气管道材料适用性评价方法 [J]. 腐蚀与防护. 2019, 40(1):48-51,65.

    SHI H, XING Y Y, WANG X Y, et al. Applicability evaluation method of coal synthetic natural gas pipeline material [J]. Corrosion & Protection, 2019, 40(1):48-51,65.
    [55]
    RONEVICH J A, SOMERDAY B P, FENG Z. Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe [J]. International Journal of Hydrogen Energy. 2017, 42(7):4259-4268.
    [56]
    RONEVICH J A, SONG E J, FENG Z, et al. Fatigue crack growth rates in high pressure hydrogen gas for multiple X100 pipeline welds accounting for crack location and residual stress [J]. Engineering Fracture Mechanics. 2020, 228:106846.
    [57]
    DREXLER E S, SLIFKA A J, AMARO R L, et al. Fatigue testing of pipeline welds and heat-affected zones in pressurized hydrogen gas [J]. Journal of Research of the National Institute of Standards and Technology. 2019, 124.
    [58]
    SHI X, YAN W, WANG W, et al. HIC and SSC behavior of high-strength pipeline steels [J]. Acta Metallurgica Sinica (English Letters). 2015, 28(7):799-808.
    [59]
    MARCHI C S S B PTechnical reference on hydrogen compatibility of materials: plain carbon ferritic steels: C-Mn alloys (code 1100)Livermore CaliforniaSandia National Laboratories2010MARCHI C S S B P. Technical reference on hydrogen compatibility of materials: plain carbon ferritic steels: C-Mn alloys (code 1100) [R]. Livermore California: Sandia National Laboratories, 2010.
    [60]
    KOMODA R, KUBOTA M, STAYKOV A, et al. Inhibitory effect of oxygen on hydrogen-induced fracture of A333 pipe steel [J]. Fatigue & Fracture of Engineering Materials & Structures. 2018, 42(6):1387-1401.
    [61]
    MICHLER T, BOITSOV I E, MALKOV I L, et al. Assessing the effect of low oxygen concentrations in gaseous hydrogen embrittlement of DIN 1.4301 and 1.1200 steels at high gas pressures [J]. Corrosion Science. 2012, 65:169-177.
    [62]
    CHATZIDOUROS E V, PAPAZOGLOU V J, TSIOURVA T E, et al. Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging [J]. International Journal of Hydrogen Energy. 2011, 36(19):12626-12643.
    [63]
    ZHOU C, YE B, SONG Y, et al. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel [J]. International Journal of Hydrogen Energy. 2019, 44(40):22547-22558.
    [64]
    封辉, 池强, 吉玲康, 等. 管线钢氢脆研究现状及进展 [J]. 腐蚀科学与防护技术. 2017, 29(03):318-322.

    FENG H, CHI Q, JI L K, et al. Research and development of hydrogen embrittlement of pipeline steel [J]. Corrosion Science and Protection Technology, 2017, 29(3):318-322.
    [65]
    XU X, ZHANG R, WANG C, et al. Experimental study on the temperature dependence of gaseous hydrogen permeation and hydrogen embrittlement susceptibility of X52 pipeline steel [J]. Engineering Failure Analysis. 2024, 155:107746.
    [66]
    XING X, CHENG R, CUI G, et al. Quantification of the temperature threshold of hydrogen embrittlement in X90 pipeline steel [J]. Materials Science and Engineering: A. 2021, 800:140118.
    [67]
    SHI K, XIAO S, RUAN Q, et al. Hydrogen permeation behavior and mechanism of multi-layered graphene coatings and mitigation of hydrogen embrittlement of pipe steel [J]. Applied Surface Science. 2022, 573:151529.
    [68]
    AN T, LI S, QU J, et al. Effects of shot peening on tensile properties and fatigue behavior of X80 pipeline steel in hydrogen environment [J]. International Journal of Fatigue. 2019, 129:105235.
    [69]
    DMYTRAKH I M, LESHCHAK R L, SYROTYUK A M, et al. Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel [J]. International Journal of Hydrogen Energy. 2017, 42(9):6401-6408.
    [70]
    HOMMA T, ANATA S, ONUKI S, et al. Crack initiation and propagation behavior of hydrogen-induced quasi-cleavage fracture in X80 pipeline steel with stress concentration [J]. Tetsu-to-Hagane. 2020, 106(9):651-661.
    [71]
    NGUYEN T T, HEO H M, PARK J, et al. Stress concentration affecting hydrogen-assisted crack in API X70 pipeline base and weld steel under hydrogen/natural gas mixture [J]. Engineering Failure Analysis. 2021, 122:105242.
    [72]
    邹才能. 新能源新产业新动能新模式 [J]. 石油科技论坛, 2020, 39(3):前插1-前插2.

    ZOU C N. New energy, new industry, new kinetic energy and new model [J]. Petroleum Science and Technology Forum, 2020, 39(3):前插1-前插2.

Catalog

    Article views (37) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return