• 中国核心期刊(遴选)数据库收录期刊
  • 中国科技论文统计源期刊
  • 中国学术期刊综合评价数据库来源期刊
Advanced Search
WU Zhongzhong, LIU Dayong, YAN Wenji, DING Yanchao, ZHANG Peng, PIAO Junkai, QU Minggui. Corrosion and Fatigue Behavior of Steel for Offshore Wind Turbine Bolts[J]. Corrosion & Protection, 2024, 45(11): 61-68. DOI: 10.11973/fsyfh240386
Citation: WU Zhongzhong, LIU Dayong, YAN Wenji, DING Yanchao, ZHANG Peng, PIAO Junkai, QU Minggui. Corrosion and Fatigue Behavior of Steel for Offshore Wind Turbine Bolts[J]. Corrosion & Protection, 2024, 45(11): 61-68. DOI: 10.11973/fsyfh240386

Corrosion and Fatigue Behavior of Steel for Offshore Wind Turbine Bolts

More Information
  • Received Date: June 10, 2024
  • Corrosion tests were conducted on bolt steel 42CrMoA in the simulated service environment of offshore wind turbine bolts in the splash zone and atmospheric zone through alternating wet dry cycles of salt spray. The corrosion products were observed by scanning electron microscopy (SEM) and their elements were detected by energy dispersive spectroscopy (EDS). The morphology of corrosion pits was characterized by optical profilometer, and the fatigue crack growth after corrosion was studied by in-situ fatigue testing machine. The results show that in the cyclic salt spray environment with alternating dry and wet conditions, the corrosion mass loss per unit area of 42CrMoA steel and corrosion time exhibited a power function. There was a linear relationship between the surface roughness and corrosion time of 42CrMoA steel. The initiation and propagation of fatigue cracks were promoted by corrosion pits, and the expansion and merging of multiple cracks accelerated the fracture of the specimen, thereby reducing the fatigue life.

  • [1]
    QIN L G, KIRIKKALELI D, HOU Y, et al. Carbon neutrality target for G7 economies: examining the role of environmental policy, green innovation and composite risk index[J]. Journal of Environmental Management, 2021, 295:113119.
    [2]
    LOTH E. Wind energy value and deep decarbonization design, what's next?[J]. Next Energy, 2023, 1(4):100059.
    [3]
    郑崇伟, 李崇银. 海上风能等级区划研究:瓶颈与对策[J]. 中国科学院院刊, 2023, 38(4):654-665.

    ZHEN C W, LI C Y. Research on offshore wind energy classification: bottlenecks and countermeasures[J]. Bulletin of Chinese Academic of Sciences, 2023, 38(4):654-665.
    [4]
    赵仕林, 杨金龙, 童颜, 等. 海上风电变流器IGBT模块腐蚀与防护研究进展[J]. 材料导报, 2023, 37(增2):407-413.

    ZHAO S L, YANG J L, TONG Y, et al. Progress on corrosion and protection of IGBT modules used in offshore wind power converter[J]. Materials Reports, 2023, 37(S2):407-413.
    [5]
    李美明, 徐群杰, 韩杰. 海上风电的防腐蚀研究与应用现状[J]. 腐蚀与防护, 2014, 35(6):584-589,622.

    LI M M, XU Q J, HAN J. Progress of corrosion and protection for offshore wind power[J]. Corrosion and Protection, 2014, 35(6):584-589,622.
    [6]
    蒲珉, 何建军, 揭军, 等. 风机叶片根部42Cr螺栓材料扭转失效研究[J]. 兵器材料科学与工程, 2022, 45(3):119-124.

    PU M, HE J J, JIE J, et al. Research on torsion failure of 42Cr bolt material at fan blade root[J]. Ordnance Material Science and Engineering, 2022, 45(3):119-124.
    [7]
    罗雁飞, 肖长远, 雷春宇, 等. 海上风电机组叶片螺栓疲劳强度影响研究[J]. 船舶工程, 2023, 45(增2):83-88.

    LUO Y F, XIAO C Y, LEI C Y, et al. Research on the influence of fatigue strength of offshore wind turbine blade bolts[J]. Ship Engineering, 2023, 45(S2):83-88.
    [8]
    居龙, 冯超, 赵劲彪, 等. 42CrMo高强度螺栓在海洋大气环境中的应力腐蚀开裂风险评估[J]. 腐蚀与防护, 2019, 40(9):644-649.

    JU L, FENG C, ZHAO J B, et al. Risk assessment of stress corrosion cracking of 42CrMo high strength steel bolts in seacoast environment[J]. Corrosion & Protection, 2019, 40(9):644-649.
    [9]
    OZTURK M, HUSEM F, KARADEMIR I, et al. Fatigue crack growth rate of AISI 4140 low alloy steel treated via shot peening and plasma nitriding[J]. Vacuum, 2023, 207:111552.
    [10]
    周文, 兰伟, 赵帅, 等. 42CrMo钢在氯离子溶液中的腐蚀行为研究[J]. 表面技术, 2017, 46(8):216-220.

    ZHOU W, LAN W, ZHAO S, et al. Corrosion behavior of 42CrMo steel in chloride solution[J]. Surface Technology, 2017, 46(8):216-220.
    [11]
    WU H Y, LEI H G, FRANK C Y. Comparison on mechanisms of high-cycle fatigue performance of structural steel exposed to urban industrial atmosphere and laboratory simulated corrosive environment based on infrared thermography[J]. International Journal of Fatigue, 2021, 145:106098.
    [12]
    WAN Y, TAN J, ZHU S T, et al. Insight into atmospheric pitting corrosion of carbon steel via a dual-beam FIB/SEM system associated with high-resolution TEM[J]. Corrosion Science, 2019, 152:226-233.
    [13]
    李宗强, 韦素欣, 王艳丽, 等. 550NH耐候钢在3种典型大气环境中的初期腐蚀行为[J]. 材料保护, 2024, 57(3):104-111,117.

    LI Z Q, WEI S X, WANG Y L, et al. Initial corrosion behavior of 550NH weathering steel in three typical atmospheric environments[J]. Materials Protection, 2024, 57(3):104-111,117.
    [14]
    王睿谦, 韩宇龙, 郭丽雅, 等. 稀土镧铈对Q355NHq钢在模拟海洋大气环境中腐蚀行为的影响[J]. 腐蚀与防护, 2024, 45(3):37-46.

    WANG R Q, HAN Y L, GUO L Y, et al. Effect of rare earth lanthanum and cerium on corrosion behavior of Q355NHq steel in simulated marine almosphere environment[J]. Corrosion & Protection, 2024, 45(3):37-46.
    [15]
    NIU J W, ZHANG B, DING G Q, et al. Study of short-term corrosion behavior of Q345 steel in marine atmospheric environment[J]. International Journal of Electrochemical Science, 2023, 18(12):100374.
    [16]
    FAN Y M, LIU W, LI S M, et al. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion[J]. Journal of Materials Science & Technology, 2020, 39:190-199.
    [17]
    ALCÁNTARA J, DE LA FUENTE D, CHICO B, et al. Marine atmospheric corrosion of carbon steel: a review[J]. Materials, 2017, 10(4):406.
    [18]
    DATTA T, PATHAK A D, BASAK S, et al. Fractal behavior of surface oxide crack patterns on AISI 4140 high-strength low-alloy steel exposed to the simulated offshore environment[J]. Applied Surface Science Advances, 2021, 5:100110.
    [19]
    LI C, MU X, WANG C G, et al. Insight to atmosphere corrosion behavior of Q345NH steel in Wenchang tropical marine environment[J]. Journal of Materials Research and Technology, 2023, 24:5755-5768.
    [20]
    MA Y T, LI Y, WANG F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corrosion Science, 2009, 51(5):997-1006.
    [21]
    WANG Y, MU X, DONG J H, et al. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere[J]. Journal of Materials Science & Technology, 2021, 76:41-50.

Catalog

    Article views (36) PDF downloads (27) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return