Citation: | ZHANG Ran, WU Yan, WANG Keqing, XU Mengying, LI Mo, CHENG Xiaolin. A Review of the Corrosion of Copper-Based Artifacts in Museum Collections by Organic Acids[J]. Corrosion & Protection, 2024, 45(10): 41-51. DOI: 10.11973/fsyfh240403 |
The corrosion mechanisms and products of copper-based artifacts in museum collections induced by formic acid and acetic acid are reviewed. It encompasses corrosion of the copper substrate, corrosion with chloride-products, and corrosion of copper-based artifacts containing alkaline Na and K compounds. Organic acids exhibit significantly different corrosion mechanisms and products depending on the presence of alkaline Na and K compounds. In the absence of Na and K compounds, the products include Cu(HCOO)2, Cu(OH)(HCOO), Cu(OH)2, Cu(CH3COO)2·2H2O, and Cu4(OH)(CH3COO)7·2H2O; whereas in the presence of alkaline Na compounds, the main products are Cu4Na4O(HCOO)8(H2O)4(OH)2, Cu2(OH)3(HCOO), and NaCu(CO3)(CH3COO). Numerous cases of copper-based artifacts corrosion by organic acids have been discovered globally in recent years, primarily yielding the latter products, which underscores the role of alkaline Na and K compounds and organic acids in corrosion. Sources of Na and K compounds include their introduction during casting, use, burial, and conservation-restoration processes of artifacts, as well as other materials in composite artifacts (such as glass or enamel), and the organic acids mainly originate from the volatilization or degradation of materials like wood, boards, paint, and adhesives in the storage and exhibition environment.
[1] |
ORGAN R M. Aspects of bronze patina and its treatment [J]. Studies in Conservation, 1963, 8(1):1-9.
|
[2] |
SCOTT D A. Bronze disease: a review of some chemical problems and the role of relative humidity [J]. Journal of the American Institute for Conservation, 1990, 29(2):193-206.
|
[3] |
周浩, 祝鸿范, 蔡兰坤. 青铜器锈蚀结构组成及形态的比较研究 [J]. 文物保护与考古科学, 2005, 17(3):22-27.
|
[4] |
潘路青铜器保护发展历程和相关问题的思考王春法中国国家博物馆文物保护修复论文集北京北京时代华文书局2019919潘路. 青铜器保护发展历程和相关问题的思考 [C]// 王春法. 中国国家博物馆文物保护修复论文集. 北京: 北京时代华文书局, 2019: 9-19.
|
[5] |
陈家昌, 买莹, 尚泽雅, 等. 古代青铜器“粉状锈”的研究现状与展望 [J]. 腐蚀与防护, 2023, 44(1):51-57.
CHEN J C, MAI Y, SHANG Z Y, et al. Review of research on “powdery rust” of ancient bronze ware [J]. Corrosion & Protection, 2023, 44(1):51-57.
|
[6] |
成小林, 柳敏, 李沫, 等. 几种罕见的黄铜钱币锈蚀产物的识别与形成原因探析 [J]. 文物保护与考古科学, 2022, 34(4):1-9.
CHENG X L, LIU M, LI M, et al. Identification and interpretation of unusual corrosion products formed on brass coins [J]. Sciences of Conservation and Archaeology, 2022, 34(4):1-9.
|
[7] |
王克青, 许梦颖, 张鹏宇, 等. 一件中国国家博物馆馆藏铜雕塑锈蚀产物的分析研究 [J]. 文物保护与考古科学, 2022, 34(5):43-52.
WANG K Q, XU M Y, ZHANG P Y, et al. Research on the corrosion products of a copper sculpture in the collections of the National Museum of China [J]. Sciences of Conservation and Archaeology, 2022, 34(5):43-52.
|
[8] |
GRZYWACZ C M. Monitoring for gaseous pollutants in museum environments [M]. Los Angeles: The Getty Conservation Institute, 2006: 101-103.
|
[9] |
GRZYWACZ C M, TENNENT N H. Pollution monitoring in storage and display cabinets: carbonyl pollutant levels in relation to artifact deterioration [J]. Studies in Conservation, 1994, 39(sup2):164-170.
|
[10] |
CLARKE S G, LONGHURST E E. The corrosion of metals by acid vapours from wood [J]. Journal of Applied Chemistry, 1961, 11(11):435-443.
|
[11] |
DONOVAN P D, STRINGER J. Corrosion of metals and their protection in atmospheres containing organic acid vapours [J]. British Corrosion Journal, 1971, 6(3):132-138.
|
[12] |
NOTOYA T, HAMAMOTO T, KAWANO K. An unusual form of corrosion in copper tubes [J]. Corrosion Engineering, 1988, 37(2):110-111.
|
[13] |
BASTIDAS J M, LÓPEZ-DELGADO A, CANO E, et al. Copper corrosion mechanism in the presence of formic acid vapor for short exposure times [J]. Journal of the Electrochemical Society, 2000, 147(3):999-1005.
|
[14] |
CANO E, TORRES C L, BASTIDAS J M. An XPS study of copper corrosion originated by formic acid vapour at 40% and 80% relative humidity [J]. Materials and Corrosion, 2001, 52(9):667-676.
|
[15] |
LÓPEZ-DELGADO A, CANO E, BASTIDAS J M, et al. A laboratory study of the effect of acetic acid vapor on atmospheric copper corrosion [J]. Journal of the Electrochemical Society, 1998, 145(12):4140-4147.
|
[16] |
CANO E, BASTIDAS J M, POLO J L, et al. Study of the effect of acetic acid vapor on copper corrosion at 40% and 80% relative humidity [J]. Journal of the Electrochemical Society, 2001, 148(11):B431-B437.
|
[17] |
LÓPEZ-DELGADO A, CANO E, BASTIDAS J M, et al. A comparative study on copper corrosion originated by formic and acetic acid vapours [J]. Journal of Materials Science, 2001, 36(21):5203-5211.
|
[18] |
CANO E, BASTIDAS J M. Effect of relative humidity on copper corrosion by acetic and formic acid vapours [J]. Canadian Metallurgical Quarterly, 2002, 41(3):327-336.
|
[19] |
BASTIDAS D M, LA IGLESIA V M. Organic acid vapours and their effect on corrosion of copper: a review [J]. Corrosion Engineering, Science and Technology, 2007, 42(3):272-280.
|
[20] |
GIL H, LEYGRAF C. Quantitative in situ analysis of initial atmospheric corrosion of copper induced by acetic acid [J]. Journal of the Electrochemical Society, 2007, 154(5):C272-278.
|
[21] |
GIL H, LEYGRAF C. Initial atmospheric corrosion of copper induced by carboxylic acids [J]. Journal of the Electrochemical Society, 2007, 154(11):C611-C617.
|
[22] |
GIL H, LEYGRAF C, TIDBLAD J. GILDES model simulations of the atmospheric corrosion of copper induced by low concentrations of carboxylic acids [J]. Journal of the Electrochemical Society, 2011, 158(12):C429-C429.
|
[23] |
TÉTREAULT J, CANO E, VAN BOMMEL M, et al. Corrosion of copper and lead by formaldehyde, formic and acetic acid vapours [J]. Studies in Conservation, 2003, 48(4):237-250.
|
[24] |
BASTIDAS J M, CHICO B, ALONSO M P, et al. Corrosion of bronze by acetic and formic acid vapours, sulphur dioxide and sodium chloride particles [J]. Materials and Corrosion, 1995, 46(9):515-519.
|
[25] |
LOPEZ-DELGADO A, BASTIDAS J M, ALONSO M P, et al. Influence of acetic and formic vapours on patinated artistic bronze [J]. Journal of Materials Science Letters, 1997, 16(9):776-779.
|
[26] |
YAN Y, ZOU C, ZHANG L H, et al. A study on corrosion products and processes of patinated tin bronze in formic acid [J]. Research on Chemical Intermediates, 2020, 46(11):5087-5099.
|
[27] |
TANG Y J, CAI L K, WANG Y, et al. Influence of formic acid on corrosion behavior of bronze under thin electrolyte layer [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2022, 37(3):482-489.
|
[28] |
CAI L K, CHEN M J, WANG Y, et al. Electrochemical corrosion behavior of bronze materials in an acid-containing simulated atmospheric environment [J]. Materials and Corrosion, 2020, 71(3):464-473.
|
[29] |
马圆圆, 闫莹, 王伟伟, 等. 有机酸性污染物对铜质材料的腐蚀影响 [J]. 腐蚀与防护, 2022, 43(7):18-23.
MA Y Y, YAN Y, WANG W W, et al. Corrosion effect of organic acidic pollutants on copper materials [J]. Corrosion & Protection, 2022, 43(7):18-23.
|
[30] |
吴雪威, 闫莹, 周浩, 等. 模拟青铜文物在乙酸气氛中的腐蚀行为 [J]. 腐蚀与防护, 2018, 39(4):258-264,326.
WU X W, YAN Y, ZHOU H, et al. Corrosion behavior of simulated bronze relics in acetic acid atmosphere [J]. Corrosion & Protection, 2018, 39(4):258-264,326.
|
[31] |
YAN Y, HUA W, ZHONG S L, et al. Electrochemical study of the corrosion behavior of bronze under acetic acid-containing thin electrolyte layers [J]. Materials Research Express, 2019, 6(9):0965b7.
|
[32] |
QIU P, LEYGRAF C. Multi-analysis of initial atmospheric corrosion of brass induced by carboxylic acids [J]. Journal of the Electrochemical Society, 2011, 158(6):C172-C177.
|
[33] |
THICKETT DCritical relative humidity levels and carbonyl pollution concentrations for archaeological copper alloysMENON R, CHEMELLO C, PANDYA AMetal 2016: Proceedings of the Interim Meeting of the ICOM-CC Metals Working Group, September 26-30, 2016New Delhi, IndiaParisICOM Committee for Conservation2016136143THICKETT D. Critical relative humidity levels and carbonyl pollution concentrations for archaeological copper alloys [C]// MENON R, CHEMELLO C, PANDYA A. Metal 2016: Proceedings of the Interim Meeting of the ICOM-CC Metals Working Group, September 26-30, 2016, New Delhi, India. Paris: ICOM Committee for Conservation, 2016: 136-143.
|
[34] |
THICKETT D, ODLYHA M. Note on the identification of an unusual pale blue corrosion product from Egyptian copper alloy artifacts [J]. Studies in Conservation, 2000, 45(1):63-67.
|
[35] |
EGGERT G. ‘Copper and bronze in art’ and the search for rare corrosion products [J]. Heritage, 2023, 6(2):1768-1784.
|
[36] |
GETTENS R J, FRONDEL C. Chalconatronite: an alteration product on some ancient Egyptian bronzes [J]. Studies in Conservation, 1955, 2(2):64.
|
[37] |
FRONDEL C, GETTENS R J. Chalconatronite, a new mineral from Egypt [J]. Science, 1955, 122(3158):75-76.
|
[38] |
GETTENS R J. Mineral alteration products of ancient metal objects [J]. Studies in Conservation, 1961, 6(S1):89-92.
|
[39] |
ODDY W A, HUGHES M J. The stabilization of ‘active’ bronze and iron antiquities by the use of sodium sesquicarbonate [J]. Studies in Conservation, 1970, 15(3):183-189.
|
[40] |
EGGERT G. Corroding glass, corroding metals: survey of joint metal/glass corrosion products on historic objects [J]. Corrosion Engineering, Science and Technology, 2010, 45(5):414-419.
|
[41] |
SCHORPP A, BRAUN M, FISCHER A, et al. In search of frequency: glass-induced metal corrosion in the deutsches bergbau-museum Bochum [J]. METALLA, 2020, 25(1):33-41.
|
[42] |
EGGERT G, FISCHER A. Curious corrosion compounds caused by contact: a review of glass-induced metal corrosion on museum exhibits (GIMME) [J]. Corrosion and Materials Degradation, 2022, 3(3):553-565.
|
[43] |
MAGEE C EThe Treatment of a severely deteriorated enamelBRIDGLAND J12th Triennial Meeting: Preprints (ICOM Committee for Conservation)LondonEarthscan Ltd.1999787792MAGEE C E. The Treatment of a severely deteriorated enamel [C]// BRIDGLAND J. 12th Triennial Meeting: Preprints (ICOM Committee for Conservation), London: Earthscan Ltd., 1999: 787-792.
|
[44] |
FISCHER A, EGGERT G, STELZNER J. When glass and metal corrode together, VI: chalconatronite [J]. Studies in Conservation, 2020, 65(3):152-159.
|
[45] |
WANG Q U, HUANG H, SHEARMAN F. Bronzes from the sacred animals necropolis at Saqqara, Egypt: a study of the metals and corrosion [J]. The British Museum Technical Research Bulletin, 2009(3):73-82.
|
[46] |
SCOTT D, DODD L. Examination, conservation and analysis of a gilded Egyptian bronze Osiris [J]. Journal of Cultural Heritage, 2002, 3(4):333-345.
|
[47] |
PELÉ-MEZIANI C, RAIMON A, MEVELLEC J Y, et al. Experimental study of chalconatronite: from its identification to the treatment of copper alloy objects [J]. Heritage, 2024, 7(6):2866-2879.
|
[48] |
马燕如浅谈埋藏环境与青铜器的腐蚀产物王春法中国国家博物馆文物保护修复论文集北京北京时代华文书局20194953马燕如. 浅谈埋藏环境与青铜器的腐蚀产物 [C]// 王春法. 中国国家博物馆文物保护修复论文集. 北京: 北京时代华文书局, 2019: 49-53.
|
[49] |
HORIE C V, VINT J A. Chalconatronite: a by-product of conservation? [J]. Studies in Conservation, 1982, 27(4):185.
|
[50] |
POLLARD A M, THOMAS R G, WILLIAMS P A. Mineralogical changes arising from the use of aqueous sodium carbonate solutions for the treatment of archaeological copper objects [J]. Studies in Conservation, 1990, 35(3):148-152.
|
[51] |
LEYSSENS K, ADRIAENS A, PANTOS E, et alStudy of corrosion potential measurements as a means to monitor the storage and stabalization processes of archaeological copper artefactsASHTON J, HALLAM DMetal 04: Proceedings of the International Conference on Metals ConservationCanberraNational Museum of Australia2004332343LEYSSENS K, ADRIAENS A, PANTOS E, et al. Study of corrosion potential measurements as a means to monitor the storage and stabalization processes of archaeological copper artefacts [C]// ASHTON J, HALLAM D. Metal 04: Proceedings of the International Conference on Metals Conservation. Canberra, National Museum of Australia, 2004: 332-343.
|
[52] |
王辇, 张然, 马燕如露天展示的四座铜雕塑清洗保护报告王春法中国国家博物馆文物保护修复报告集北京北京时代华文书局20209098王辇, 张然, 马燕如. 露天展示的四座铜雕塑清洗保护报告 [C]// 王春法. 中国国家博物馆文物保护修复报告集. 北京: 北京时代华文书局, 2020: 90-98.
|
[53] |
CHIAVARI C, MARTINI C, MONTALBANI S, et al. The bronze panel (paliotto) of San Moisè in Venice: materials and causes of deterioration [J]. Materials and Corrosion, 2016, 67(2):141-151.
|
[54] |
LIU W, LI M, WU N, et al. A new application of Fiber optics reflection spectroscopy (FORS): identification of ‘bronze disease’ induced corrosion products on ancient bronzes [J]. Journal of Cultural Heritage, 2021, 49:19-27.
|
[55] |
刘薇, 张鹏宇, 吴娜. 中国国家博物馆藏铜半结跏泥金观音锈蚀产物的光谱分析 [J]. 光谱学与光谱分析, 2023, 43(12):3832-3839.
LIU W, ZHANG P Y, WU N. The spectroscopic analysis of corrosion products on gold-painted copper-based bodhisattva (Guanyin) in half lotus position from national museum of China [J]. Spectroscopy and Spectral Analysis, 2023, 43(12):3832-3839.
|
[56] |
TRENTELMAN K, STODULSKI L, SCOTT D, et al. The characterization of a new pale blue corrosion product found on copper alloy artifacts [J]. Studies in Conservation, 2002, 47(4):217-227.
|
[57] |
ROBINE T, THICKET TCase study: application of raman spectroscopy to corrosion productsEDWARDS H G M, CHALMERS J MRaman Spectroscopy in Archaeological and Art HistoryCambridgeThe Royal Society of Chemistry2005325334ROBINE T, THICKET T. Case study: application of raman spectroscopy to corrosion products [C]// EDWARDS H G M, CHALMERS J M. Raman Spectroscopy in Archaeological and Art History. Cambridge: The Royal Society of Chemistry, 2005: 325-334.
|
[58] |
WANG Q Y. Technical studies of balkan white metal jewellery of the nineteenth - twentieth centuries [J]. Studies in Conservation, 2021, 66(2):113-126.
|
[59] |
王全玉. 馆藏金属器物上浅蓝色铜锈蚀物的辨别与成因分析 [J]. 文物保护与考古科学, 2020, 32(6):117-125.
WANG Q Y. Identification and interpretation of pale blue copper corrosion products formed on metal objects in museum collections [J]. Sciences of Conservation and Archaeology, 2020, 32(6):117-125.
|
[60] |
PATERAKIS A B. Volatile organic compounds and the conservation of inorganic materials [M]. London: Archetype Publications Ltd, 2016: 16.
|
[61] |
EGGERT G, WOLLMANN A, SCHWAHN B, et alWhen glass and metal corrode togetherBRIDGLAND J15th triennial conference, New Delhi, 22-26 September 2008: preprints (ICOM Committee for Conservation)Paris (France)ICOM Committee for Conservation2008211216EGGERT G, WOLLMANN A, SCHWAHN B, et al. When glass and metal corrode together [C]// BRIDGLAND J. 15th triennial conference, New Delhi, 22-26 September 2008: preprints (ICOM Committee for Conservation). Paris (France): ICOM Committee for Conservation, 2008: 211-216.
|
[62] |
EGGERT G, BÜHRER A, BARBIER B, et alWhen glass and metal corrode together. ii, a black forest schäppel and further occurrences of socoformaciteRÖMICH HGlass and Ceramics Conservation 2010: Interim Meeting of the ICOM-CC Working Group, October 3-6 2010 CorningNew YorkCorning Museum of Glass2010174180EGGERT G, BÜHRER A, BARBIER B, et al. When glass and metal corrode together. ii, a black forest schäppel and further occurrences of socoformacite [C]// RÖMICH H. Glass and Ceramics Conservation 2010: Interim Meeting of the ICOM-CC Working Group, October 3-6 2010 Corning. New York: Corning Museum of Glass, 2010: 174-180.
|
[63] |
DINNEBIER R E, RUNČEVSKI T, FISCHER A, et al. Solid-state structure of a degradation product frequently observed on historic metal objects [J]. Inorganic Chemistry, 2015, 54(6):2638-2642.
|
[64] |
EGGERT G, FISCHER A. The formation of formates: a review of metal formates on heritage objects [J]. Heritage Science, 2021, 9(1):26.
|
[65] |
FISCHER A, EGGERT G, DINNEBIER R, et al. When glass and metal corrode together, V: sodium copper formate [J]. Studies in Conservation, 2018, 63(6):342-355.
|
[66] |
EULER H, BARBIER B, KIRFEL A, et al. Crystal structure of trihydroxydicopper formate, Cu2(OH)3(HCOO) [J]. New Crystal Structures, 2009, 224(1-4):609-610.
|
[67] |
EGGERT G, HASELOFF S, EULER H, et alWhen glass and metal corrode together, III: the formation of dicoppertri-hydroxyformateBRIDGLAND JCOM-CC 16th triennial conference Lisbon 19-23 September 2011: PreprintsLisbon (Portugal)Critério--Produção Grafica, Lda.2011EGGERT G, HASELOFF S, EULER H, et al. When glass and metal corrode together, III: the formation of dicoppertri-hydroxyformate [C]// BRIDGLAND J. COM-CC 16th triennial conference Lisbon 19-23 September 2011: Preprints. Lisbon (Portugal): Critério--Produção Grafica, Lda., 2011.
|
[68] |
HOLZLEITNER M, HIETZ M, ANGHELONE M, et alGlass-induced metal corrosion: study and conservation of an enamelled altarpiece (1954-56) from the collection of the university of applied arts ViennaCHEMELLO C, BRAMBILLA L, JOSEPH EMetal 2019: Proceedings of the Interim Meeting of the ICOM-CC Metals Working Group September 2-6, 2019Neuchåtel, SwitzerlandICOM Committee for Conservation2019365368HOLZLEITNER M, HIETZ M, ANGHELONE M, et al. Glass-induced metal corrosion: study and conservation of an enamelled altarpiece (1954-56) from the collection of the university of applied arts Vienna [C]// CHEMELLO C, BRAMBILLA L, JOSEPH E. Metal 2019: Proceedings of the Interim Meeting of the ICOM-CC Metals Working Group September 2-6, 2019. Neuchåtel, Switzerland: ICOM Committee for Conservation, 2019: 365-368.
|
[69] |
VEIGA A, TEIXEIRA D M, CANDEIAS A J, et al. On the chemical signature and origin of dicoppertrihydroxyformate (Cu2(OH)3HCOO) formed on copper miniatures of 17th and 18th centuries [J]. Microscopy and Microanalysis, 2016, 22(5):1007-1017.
|
[70] |
MARCHETTI A, BELTRAN V, NUYTS G, et al. Novel optical photothermal infrared (O-PTIR) spectroscopy for the noninvasive characterization of heritage glass-metal objects [J]. Science Advances, 2022, 8(9):eabl6769.
|
[71] |
FISCHER A, STELZNER J, BETTE S, et alWhen glass and metal corrode together, vii: zinc formates and further unknown zinc compoundsCHEMELLO C, BRAMBILLA L, JOSEPH EMetal 2019: Proceedings of the Interim Meeting of the ICOM-CC Metals Working Group September 2-6, 2019Neuchåtel, SwitzerlandICOM Committee for Conservation2019158167FISCHER A, STELZNER J, BETTE S, et al. When glass and metal corrode together, vii: zinc formates and further unknown zinc compounds [C]// CHEMELLO C, BRAMBILLA L, JOSEPH E. Metal 2019: Proceedings of the Interim Meeting of the ICOM-CC Metals Working Group September 2-6, 2019. Neuchåtel, Switzerland: ICOM Committee for Conservation, 2019: 158-167.
|
[72] |
KNIGHT B. Passive monitoring for museum showcase pollutants [J]. Studies in Conservation, 1994, 39(sup2):174-176.
|
[73] |
BETTE S, FISCHER A, STELZNER J, et al. Brass and glass: crystal structure solution and phase characterisation of the corrosion product Zn4Cu3(Zn1-xCux)6(HCOO)8(OH)18·6(H2O) [J]. European Journal of Inorganic Chemistry, 2019, 2019(7):893.
|
[74] |
THICKETT D, BRADLEY S, LEE LAssessment of the Risks to Metal Artifacts Posed by Volatile Carbonyl PollutantsMOUREY W, ROBBIOLA LMetal 98: Proceedings of the International Conference on Metals ConservationLondon (United Kingdom)Earthscan Ltd.1998260264THICKETT D, BRADLEY S, LEE L. Assessment of the Risks to Metal Artifacts Posed by Volatile Carbonyl Pollutants [C]// MOUREY W, ROBBIOLA L. Metal 98: Proceedings of the International Conference on Metals Conservation. London (United Kingdom): Earthscan Ltd., 1998: 260-264.
|
[75] |
PATERAKIS A B. The influence of conservation treatments and environmental storage factors on corrosion of copper alloys in the ancient Athenian agora [J]. Journal of the American Institute for Conservation, 2003, 42(2):313-339.
|